Делитель напряжения

Делитель напряжения. Схема, расчет, формула. Рассчитать. Применение. Осциллограф.

Делитель напряжения. Онлайн расчет. Применение на примере осциллографа (10+)

1 2

Делитель напряжения применяется, если нужно получить заданное напряжение при условии стабилизированного питания. Сейчас мы поговорим о постоянном токе и резисторных делителях. О делителях с использованием конденсаторов, диодов, стабилитронов, индуктивностей и других элементов будет отдельная статья. Подпишитесь на новости, чтобы ее не пропустить. В конце для примера расскажу, как сделать делитель напряжения для осциллографа, чтобы снимать осциллограммы высокого напряжения.

Резисторные делители также могут применяться для уменьшения в заданное количество раз сигналов сложной формы. На делителях напряжения с регулируемым коэффициентом ослабления строятся, например, регуляторы громкости.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Резистивный делитель напряжения

В общем случае устройства этого типа выполняют преобразование по формуле Uвых=Uвх*К, где:

  • Uвх (вых) – напряжения на входе и выходе, соответственно;
  • К – корректирующий множитель, обозначающий передающие способности узла.

Если взять первый пример из рис. выше, для уточнения сути процессов подойдет второй закон Кирхгофа. В соответствии с этим правилом, общее значение напряжений на последовательно соединенных резисторах будет равно сумме ЭДС на каждом элементе. Так как ток не изменяется в замкнутом контуре, для расчета можно использовать закон Ома:

U (напряжение) = I (ток) * R (электрическое сопротивление)

Нижнюю часть схемы (плечо) используют для получения необходимого изменения входного параметра.

Делитель напряжения на резисторах

Рассмотрим, как рассчитать практически любой делитель напряжения на резисторах. Преимущественное большинство радиоэлектронных элементов и микросхем питаются относительно низким напряжением – 3…5 В. А многие блоки питания выдают U = 9 В, 12 В или 24 В. Поэтому для надежной и стабильной работы различных электронных элементов необходимо снижать величину напряжения до приемлемого уровня. В противном случае может наступить пробой радиоэлектронных элементов. Особенно следует уделять внимание микросхемам – наиболее чувствительным элементам к повышенному напряжению.

Существуют много способов, как снизить напряжение. Выбор того или другого способа зависит от конкретной задачи, что в целом определяет эффективность всего устройства. Мы рассмотрим самый простой способ – делитель напряжения на резисторах, который, тем не менее, довольно часто применяется на практике, но исключительно в маломощных цепях, что поясняется далее.

Расчет делителя напряжения на резисторах

Чтобы сделать и рассчитать простейший делитель напряжения достаточно соединить последовательно два резистора и подключить их источнику питания. Такая схема очень распространенная и применяется более чем в 90 % случаев.

Вход схемы имеет два вывода, а выход – три. При одинаковых значения сопротивлений R1 и R2 выходные напряжения Uвых1 и Uвых2 также равны и по величине вдвое меньше входного Uвх. Причем выходное U можно сниматься с любого из резисторов – R1 или R2. Если сопротивления не равны, то выходное U будет на резисторе большего номинала.

Точное соотношение Uвых1 к Uвых2 рассчитаем, обратившись к закону Ома. Резисторы вместе с источником питания образуют последовательную цепь, поэтому величина электрического тока, протекающего через R1 и R2 определяется отношением напряжения источника питания Uвх к сумме сопротивлений:

Следует обратить внимание, чем больше сумма сопротивлений, тем меньший ток I при том же значении Uвх.

Далее, согласно закону Ома, подставив значение тока, находим Uвых1 и Uвых2:

Путем подстановки в две последние формулы значение из самой первой формулы, находим значение выходного U в зависимости от входного и сопротивлений двух резисторов:

Применяя делитель напряжения на резисторах, необходимо понимать и помнить следующее:

    1. Коэффициент полезного действия такой схемы довольно низкий, поскольку только часть мощности источника питания поступает к нагрузке, а остальная мощность преобразуется в тепло, выделяемое на резисторах. Чем больше понижается напряжение, тем меньше мощности от источника питания поступит к нагрузке.
  1. Так как нагрузка подключается параллельно к одному из резисторов делителя, то есть шунтирует его, то общее сопротивление цепи снижается и происходит перераспределение падений напряжений. Поэтому сопротивление нагрузки должно быть гораздо больше сопротивления резистора делителя. В противном случае схема будет работать нестабильно с отклонением от заданных параметров.
  2. Распределение U между R1 и R2 определяется исключительно их относительными значениями, а не абсолютными величинами. В данном случае неважно, будут лиR1 и R2 иметь значение 2 кОм и 1 кОм или 200 кОм и 100 кОм. Однако при более низких значениях сопротивлений можно получить большую мощность на нагрузке, но следует помнить, что и больше мощности преобразуется в тепло, то есть израсходуется невозвратно впустую.

Также иногда находят применение и более сложные делители напряжений, состоящие из нескольких последовательно соединенных резисторов.

Делитель напряжения на переменном резисторе

Схему делителя напряжения на переменном резисторе называют схемой потенциометра. Вращая рукоятку громкости музыкального центра или автомагнитолы, вы таким действием плавно изменяете напряжение, подаваемое на усилитель модности звуковой частоты. Принцип работы и сборка простейшего усилителя мощности уже были ранее рассмотрены здесь.

При перемещении (вращении) ручки переменного резистора сверху вниз по чертежу происходит плавное изменение U от значения источника питания до нуля.

В звуковой технике главным образом применяются переменные резисторы с логарифмической зависимостью, поскольку слуховой аппарат человек воспринимает звуки с данной зависимостью. Для регулирования уровня звука одновременно по двум каналам используют сдвоенные переменные резисторы.

В качестве делителя напряжения находят применение переменные резисторы, имеющие следующие зависимости сопротивления от угла поворота ручки: логарифмическую, линейную и экспоненциальную. Конкретный тип зависимости применяется для решения отдельной задачи.

Составные элементы прибора соединяют в цепь, чтобы получить из сети нужную для устройства часть энергии.


Пример работы делителя напряжения на фоторезисторе.

Исходное сопротивление меняется от 1кОм в момент полного освещения до 10кОм при отсутствии света, то можно увеличить диапазон сопротивления. При добавлении резисторов с R=5,6кОм, исходящее напряжение меняется следующим образом:

Освещённость R1 (кОм) R2(кОм) R2/(R1+R2) U выходное (В)
Яркая 5,6 1 0,15 0,76
Тусклая 5,6 7 0,56 2,78
Темнота 5,6 10 0,67 3,21

Таким образом, увеличивается диапазон выходного напряжения, и оно становится подходящим для большинства сетей.

Потенциометры

Потенциометры используют в качестве делителя в системе с постоянным током. Их применяют в основном для изменения отдельных параметров в механизме.

На потенциометр подается напряжение, регулируемое подвижным контактом, который действует, когда крутят ручку, в результате оно может меняться от нуля до исходного значения.
Потенциометры используют в быту, как регулятор громкости, и в электронике, например, в качестве датчика.


Резистивные датчики

Резистивные датчики также называют омическими. Это приборы, в которых изменяется сопротивление, если изменяется длина, площадь сечения или удельное сопротивление. Их используют в устройствах для изменения сопротивления, а также при помощи микроконтроллера с его помощью вы можете измерить напряжение. Существуют различные датчики, одним из некоторых является фоторезистор — переменный резистор, сопротивление которого зависит от попадающего на него света.

Принцип работы

Делитель напряжения (ДН) является устройством, в котором осуществляется взаимосвязь выходного и входного U при помощи коэффициента передачи. Коэффициент передачи — отношение значений U на выходе и на входе делителя. Схема делителя напряжения проста и представляет собой цепочку из двух последовательно соединенных потребителей — радиоэлементов (резисторов, конденсаторов или катушек индуктивности). По выходным характеристикам они отличаются.

Читайте также  Асбест вред

У переменного тока существуют такие главные величины: напряжение, сила тока, сопротивление, индуктивность (L) и емкость (C). Формулы расчета основных величин электричества (U, I, R, C, L) при последовательном подключении потребителей:

  1. Значения сопротивлений складываются;
  2. Напряжения складываются;
  3. Ток будет вычисляться по закону Ома для участка цепи: I = U / R;
  4. Индуктивности складываются;
  5. Емкость всей цепочки конденсаторов: C = (C1 * C2 * .. * Cn) / (C1 + C2 + .. + Cn).

Для изготовления простого резисторного ДН и используется принцип последовательно включенных резисторов. Условно схему можно разделить на 2 плеча. Первое плечо является верхним и находится между входом и нулевой точкой ДН, а второе — нижним, с него и снимается выходное U.

Сумма U на этих плечах равна результирующему значению входящего U. ДН бывают линейного и нелинейного типов. К линейным относятся устройства с выходным U, которое изменяется по линейному закону в зависимости от входной величины. Они применяются для задания нужных U в различных частях схем. Нелинейные применяются в функциональных потенциометрах. Их сопротивление может быть активным, реактивным и емкостным.

Кроме того, ДН может быть еще и емкостным. В нем используется цепочка из 2 конденсаторов, которые соединены последовательно.

Его принцип работы основан на реактивной составляющей сопротивления конденсаторов в цепи тока с переменной составляющей. Конденсатор обладает не только емкостными характеристиками, но и сопротивлением Xc. Это сопротивление называется емкостным, зависит от частоты тока и определяется по формуле: Xc = (1 / C) * w = w / C, где w — циклическая частота, C — значение конденсатора.

Циклическая частота вычисляется по формуле: w = 2 * ПИ * f, где ПИ = 3,1416, а f — частота переменного тока.

Конденсаторный, или емкостной, тип позволяет получать сравнительно большие токи, чем с резистивных устройств. Он получил широкое применение в высоковольтных цепях, в которых значение U необходимо снизить в несколько раз. Кроме того, он обладает существенным преимуществом — не перегревается.

Индуктивный тип ДН основан на принципе электромагнитной индукции в цепях тока с переменной составляющей. Ток протекает по соленоиду, сопротивление которого зависит от L и называется индуктивным. Его значение прямо пропорционально зависит от частоты переменного тока: Xl = w * L, где L — значение индуктивности контура или катушки.

Индуктивный ДН работает только в цепях с током, у которого есть переменная составляющая, и обладает индуктивным сопротивлением (Xl).

Преимущества и недостатки

Основными недостатками резистивного ДН являются невозможность его применения в высокочастотных цепях, существенное падение напряжений на резисторах и уменьшение мощности. В некоторых схемах нужно подбирать мощность сопротивлений, так как происходит существенный нагрев.

В большинстве случаев в цепях переменного тока применяются ДН с активной нагрузкой (резистивные), но с использованием компенсационных конденсаторов, подключенных параллельно к каждому из резисторов. Этот подход позволяет уменьшить нагрев, но не убирает основной недостаток, который заключается в потере мощности. Преимуществом является применение в цепях постоянного тока.

Для исключения потери мощности на резистивном ДН активные элементы (резисторы) следует заменить емкостными. Емкостный элемент относительно резистивного ДН обладает рядом преимуществ:

  1. Применяется в цепях переменного тока;
  2. Отсутствует перегрев;
  3. Потеря мощности снижена, так как конденсатор не обладает, в отличие от резистора, мощностью;
  4. Возможно применение в высоковольтных источниках напряжения;
  5. Высокий коэффициент полезного действия (КПД);
  6. Меньшие потери по I.

Недостатком является невозможность применения в схемах с постоянным U. Это связано с тем, что конденсатор в цепях с постоянным током не обладает емкостным сопротивлением, а лишь выступает в качестве емкости.

Индуктивный ДН в цепях с переменной составляющей также обладает рядом преимуществ, но его можно использовать и в цепях с постоянным значением U. Катушка индуктивности обладает сопротивлением, но из-за индуктивности этот вариант не подходит, так как происходит существенное падение U. Основные преимущества по сравнению с резистивным типом ДН:

  1. Применение в сетях с переменным U;
  2. Незначительный нагрев элементов;
  3. Потеря мощности в цепях переменного тока меньше;
  4. Сравнительно высокий КПД (выше емкостных);
  5. Использование в высокоточной измерительной аппаратуре;
  6. Обладает меньшей погрешностью;
  7. Нагрузка, подключенная к выходу делителя, не влияет на коэффициент деления;
  8. Потери по току меньше, чем у емкостных делителей.

К недостаткам следует отнести следующие:

  1. Применение в сетях питания постоянного U приводит к существенным потерям по току. Кроме того, напряжение резко падает из-за расхода электрической энергии на индуктивность.
  2. Выходной сигнал по частотным характеристикам (без применения выпрямительного моста и фильтра) изменяется.
  3. Не применяется в высоковольтных цепях переменного тока.

Делитель с подстройкой верхнего плеча (расчёт сопротивления, расчёт напряжений)


Здесь нижний вывод подстроечного резистора R2 соединён со средним выводом и выходом делителя, поэтому фактически R2 входит в состав R1 — верхнего плеча.


Этот калькулятор чуть удобнее — он рассчитывает R1 и R2 для заданного выходного напряжения и R3. Не придётся долго перебирать номиналы, чтобы попасть в нужный диапазон напряжений.

Инструкция:
1. Задать входное и выходное напряжения Uвх, Uвых.
2. Установить R1, R2max и R2* в нули.
3. Выбрать R3 из таблицы стандартных номиналов и внести его в графу. Калькулятор выдаст расчётное значение суммы R1 и R2.
4. Задать стандартный номинал R1 — меньше, чем сумма R1+R2.
5. Указать максимальное сопротивление подстроечного резистора R2max. Итоговая сумма R1+R2max должна быть больше расчётного значения. Чем ближе R1 к сумме и чем меньше R2, тем уже диапазон регулировки Umin, Umax.
6. В графу R2* можно внести точное значение резистора, чтобы увидеть, какое при этом будет напряжение на выходе Uвых. И для реальной схемы дополнить R1 конкретно этим R2*.

Можно рассчитать и простой делитель на двух резисторах, если указать значения R1 и R3 при R2max и R2* = 0.

Определение

Делителем напряжения называется прибор или устройство, которое понижает уровень выходного напряжения относительно входного, пропорционально коэффициенту передачи (он будет всегда ниже нуля). Такое название он получил, потому что представляет собой два и более последовательно соединенных участка цепи.

Они бывают линейными и нелинейными. При этом первые представляют собой активное или реактивное сопротивление, в которых коэффициент передачи определяется соотношением из закона Ома. К ярко выраженным нелинейным делителям относят параметрические стабилизаторы напряжения. Давайте разберемся как устроен это прибор и зачем он нужен.

Делитель напряжения на конденсаторах

В цепях переменного тока, в высоковольтных схемах, применяют делители напряжения на конденсаторах. Здесь используется реактивный характер сопротивления конденсаторов в цепях переменного тока. Величина реактивного сопротивления конденсатора в цепи переменного тока зависит от электроемкости конденсатора и от частоты напряжения. Вот формула для нахождения этого сопротивления:

Чем больше электроемкость конденсатора — тем его реактивное (емкостное) сопротивление меньше и чем выше частота — тем так же меньше реактивное сопротивление.

Делите напряжения на конденсаторах используются в измерительных схемах цепей переменного тока.
Падения напряжений на плечах считается аналогично случаю с постоянными активными сопротивлениями (резисторами, см. выше в делители напряжения на резисторах).

Достоинство конденсаторов, применяемых в делителях, состоит в том, что рассеивание энергии в форме тепла получается минимальным, и зависит только от качества диэлектрика.

Читайте также  Красивые кованые калитки фото

Делитель напряжения на резисторах

Для того чтобы хорошо понять суть лекции по электротехнике на тему «Делитель напряжения» рекомендую освежить в своей памяти законы Кирхгофа и что такое падение напряжения на участке цепи.

Рассмотрим достаточно простую цепь из двух последовательно соединенных резисторов с разными номиналами сопротивлений.

В соответствии с законом Ома если приложить к такой цепи напряжение, то его падение на обоих сопротивлениях будет также разным.

Схема, на рисунке выше, и является самым простым делителем на резисторах. Обычно в схемах электроники делитель напряжения изображают, так:

Для примера расчета делителя разберем эту схему более подробно. В ней R1 = 2 кОм, R2 = 1 кОм и напряжение источника питания, оно же и является входным напряжением Uвх = 30 вольт. Напряжение в точке А равно полному напряжению источника питания — 30 вольтам. Напряжение на выходе схемы Uвых, то есть в точке В и соответствует напряжению на сопротивлении R2. Вычислим Uвых.

В нашем случае, UR2 = 0,01 А &#215 1000 Ом = 10 В.

Выходное напряжение можно определить и вторым способом:

Результат вычислений должен получится тоже 10 вольт.

Последнюю формулу можно использовать в расчетах любого делителя, состоящего из двух и более сопротивлений, включенных последовательно.

В случае если два сопротивления ДН имеют одинаковый номинал, получим:

Расчет делителя напряжения из трех последовательно включенных резисторов с равными значениями

На рисунке ниже представлен делитель, состоящий из трех одинаковых сопротивлений номиналом в 1 кОм = 1000 Ом каждый. Вычислим напряжение в точках А и В относительно точки Е.

Делитель напряжения с реактивными элементами в цепи переменного тока

Делитель может состоять так же и из реактивных компонентов (конденсаторы или катушки индуктивности), но в этом случае для его правильной работы необходимо питание синусоидальным током

Емкостный делитель напряжения работает аналогично резистивному, но рассчитывается несколько иначе, так как реактивное сопротивление конденсаторов обратно пропорционально номиналу их ёмкости:

Rc — реактивное сопротивление конденсатора; π — число ПИ; ƒ частота синусоидального напр, Гц; C — емкость конденсатора

То есть чем выше емкость конденсатора, тем выше его реактивное сопротивление, и следовательно в приведенной схеме ДН на конденсаторе с большей емкостью падение напряжения будет ниже, чем на конденсаторе с меньшей емкостью. Следовательно, формула для емкостного делителя напряжения будет такая:

Индуктивный делитель так же как и емкостный требует для своей работы переменное питающее напряжение.

Так как, реактивное сопротивление катушки индуктивности в цепи переменного тока пропорционально номиналу катушки:

RL — реактивное сопротивление катушки индуктивности; π — число ПИ; ƒ частота синусоидального напряжения, Гц; L — индуктивность катушки, Генри.

Следует добавить, что во всех расчетах величина нагрузки была условно принята бесконечности, поэтому полученные значения будут правильными при работе схем делителя напряжения на сопротивление нагрузки, во много раз большее, чем номиналы собственных сопротивлений.

Расчет делителя напряжения онлайн калькулятор

Итак, делитель напряжения используются практически повсеместно. Но чаще всего специально заморачиваться с ними не нужно, кроме тех отдельных случаев, когда нужен делитель с определенным коэффициентом деления. Кстати, всем известные переменные сопротивления могут использоваться как делители напряжения. Кстати кроме делителей напряжения существует еще делитель тока. Простейший делитель тока — это два сопротивления, соединенные параллельно. Но оставим эту тему для другой лекции по электротехнике.