Схемы для самодельных блоков питания светодиодных лент

Схемы для самодельных блоков питания светодиодных лент

Современный рынок осветительных приборов позволяет сделать любой тип освещения для своего дома. При этом многие умельцы некоторые элементы осветительных приборов собирают своими руками.
Самым распространенным типом освещения на сегодняшний день является светодиодная лента. Самостоятельный сбор в данной ситуации возможен как отдельных диодов, так и целого блока питания к ленте.

Эта статья расскажет вам, как своими руками можно сделать блок питания к светодиодной ленте.

Как сделать блок питания

Самостоятельно сделать блок питания для светодиодов достаточно просто. Для ленты на 20 ячеек Вам понадобится:

  1. Трансформатор на 12 Вольт, который может передавать ток на 1 А;
  2. Диодный мост с конденсатором;
  3. Микросхема КР142ЕН8Б (или 7812), которая будет необходима для радиатора (ели блок питания гудит, то это проблема именно данной детали).

Соединяем все приспособления по стандартной схеме и подключаем самодельный проводник к ленте. Собрать блок можно в старый корпус от обычного мини-трансформатора, в нем же и скрыт провод. Для удобства ниже представлена схема цепи блока питания для светодиодной ленты:

Фото — Схема цепи блока питания для светодиодной ленты Фото — Схема светодиодной ленты с блоком Фото — Подключение светодиодной ленты к сети

Ремонт блока питания для светодиодной ленты

Зачастую все дешевые китайские блоки питания для светодиодных лент выглядят примерно так. Стоит ли браться за ремонт такого блока? Стоит однозначно!

Как правило, если плата блока питания целая, и не превратилась в кусок обуглившегося радио-хлама, то ремонту такой блок подлежит.

Схема, блок питания для светодиодной ленты

Схемы в таких блоках почти всегда одинаковые, для наглядности можно пользоваться схемой изображенной ниже. Типичная схема, которая используется в подобных блоках питания.

Основные неисправности в этих блоках питания:

  1. Микросхема ШИМ контроллер — TL494. Аналог: МВ3759, IR3M02, М1114ЕУ, KA7500 и т.д.
  2. Конденсаторы С22, С23 – высыхают, вздуваются и т.д.
  3. Ключевые транзисторы Т10, Т11.
  4. Сдвоенный диод D33 и конденсаторы С30-С33.
  5. Остальные элементы выходит из строя крайне редко, но тоже не стоит упускать их из вида.

Для начала вскрываем наш блок и осматриваем предохранитель. Если он целый, подаем питание и измеряем напряжение на конденсаторах С22, С23. Оно должно быть порядка 310 В. Если напряжение такое, значит сетевой фильтр и выпрямители исправны.

Следующим этапом станет проверка ШИМ. У нашего блока это микросхема КА7500.

— на 12 выводе должно быть около 12-30 В. Если нет, проверяем дежурку. Если есть – проверяем микросхему.

— на 14 выводе должно быть около +5 В.

Если нет, меняем микросхему. Если есть – проверяем микросхему осциллографом согласно схеме.

Как проверить TL494 без осциллографа?

Если нет осциллографа, рекомендуем взять заведомо рабочий блок питания, установить вместо микросхемы DIP панель, куда можно подключать проверяемые ШИМ контроллеры. Это единственный достоверный и вменяемый способ проверки TL494 без осциллографа.

Наша микросхема КА7500 после проверки, оказалась неисправной. Перед установкой нового ШИМ контроллера устанавливаем DIP панель.

На фото мы подготовили все для замены ШИМ.

Меняем ее на аналог TL494CN.

Следующим этапом станет небольшая модернизация блока. Если внимательно осмотреть сетевой фильтр есть место для установки варистора.

Устанавливаем варистор К275. Он будет защищать блок от скачков высокого напряжения. При коротком скачке – варистор поглощает энергию импульса, а при длительном – сопротивление варистора станет настолько малым, что сработает предохранитель и вся схема блока останется целой.

Блок перед финальным тестом.

После замены неисправных компонентов подключаем блок в сеть. Как видим блок прекрасно работает. Подстроечным резистором Р1 (возле зеленого светодиода) можно точно выставить выходное напряжение на блоке питание. Диапазон корректировки лежит в пределах от 11,65 В. до 13,25 В.

Как видим все работает исправно, ремонт блока питания для светодиодной ленты окончен. Учитывая, что в блоке отсутствует активная система охлаждения, рационально установить на крышку блока дополнительный кулер, закрытый сеткой в виде гриля.

Важно! При ремонте блока многие его компоненты находятся под опасным для жизни напряжением. Не стоит проводить манипуляции без достаточных знаний и навыков!

Готовые блоки

В продаже доступно большое количество моделей от разных производителей блоков питания для светодиодных лент на 12В. Среди наиболее популярных выделяются:

  1. DR-75W.
  2. «Моллюск».
  3. Feron.
  4. Arlight.
  5. LedLamp.

Единственное, что нужно учитывать при выборе готовых блоков – это соответствие его параметрам системы освещения – по напряжению, мощности, типу лед-полоски и условиям эксплуатации, а также месту монтажа.

Как сделать самому?

Для самостоятельного изготовления блока питания потребуется:

  1. Много времени.
  2. Немного деталей.

Что нам может понадобиться для сборки блока питания светодиодной ленты:

  • корпус;
  • лента необходимой длины;
  • плата;
  • шнур;
  • отвертка;

Представляем вашему вниманию схему сборки БП 12в:

Обозначения:

  1. C1 – балластный конденсатор.
  2. C2 – сглаживающий фильтр.
  3. VD1 – VD4 – диоды.
  4. VD5 – стабилитрон.
  5. R1 – R3 – резисторы.

Пошаговое руководство:

  1. Самым оптимальным вариантом будет служить бестрансформаторный БП с балластным конденсатором.
  2. Конденсатор гасит сетевое напряжение, которое затем подается на выпрямитель, собранный на диодах. С выпрямителя оно поступает на сглаживающий фильтр.
  3. Резисторы обеспечивают быструю разрядку конденсаторов. R1 ограничивает ток при подключении, стабилитрон ограничивает напряжение на выходе, предоставляя 12 вольт.
  4. От номинала конденсатора C1 зависит ток для блока питания.
  5. Не стоит запитывать светодиоды максимально допустимым током.

Как рассчитать мощность

При самостоятельном изготовлении блока питания необходимо учитывать мощность потребления светодиодной ленты. Точные данные можно узнать в спецификации к конкретной модели. А вот данные самых распространенных типов:

  1. SMD-3528 вмещающая на 1 метре 60 светодиодов, суммарная мощность 4,8 Вт.
  2. SMD-3528 со 120 светодиодами на одном метре имеет мощность, соответственно, 7,2 Вт.
  3. SMD-3528 с 240 светодиодами на одном метре имеет мощность 16 Вт.
  4. SMD-5050 с 30 элементами – 7,2 Вт.
  5. SMD-5050 с 60 элементами – 14 Вт.
  6. SMD-5050 со 120 элементами – 25 Вт.

Если вы осуществляете для светодиодной ленты подбор блока питания (готового) или же собираете элементы для самостоятельного изготовления, нужно учитывать все параметры. Основными являются:

  1. Мощность.
  2. Рабочее напряжение.

Для того чтобы рассчитать суммарную мощность ленты, необходимо знать, сколько потребляет один погонный метр. Затем это значение умножается на длину (в метрах). Далее нужно прибавить еще 25% от полученного значения и выбрать блок питания (или трансформатор), мощность которого наиболее близка к расчетной.

Обзор стоимости

Простые незащищенные модели с пассивным охлаждением на весну 2017 года имеют расчетную стоимость в 10-20 руб за 1 Вт мощности. Более дорогие модели с герметичным корпусом и системой охлаждения имеют стоимость в диапазоне от 40 руб за 1 Вт.

Цена на блоки питания напряжением 12 В для лент из светодиодов начинаются с 100 рублей за модели мощностью в 18-20 Вт на Алиэкспресс и подобных интернет-площадках. В розничных магазинах наценка может доходить до 50-80 руб за 1 Вт у самых примитивных ИБП.

Читайте также  Погреб в гараже

Стоит также учитывать тот факт, что производитель часто существенно завышает характеристики своего устройства. Наиболее простой способ отличить мощное устройство визуально – оно будет иметь большие радиаторы охлаждения и провода большого сечения.

Более дорогие модели с герметичным корпусом и системой охлаждения имеют стоимость в диапазоне от 40 руб за 1 Вт

Устройства с питанием от сети 220В

В полосах с питанием от 220В используются SMD светодиоды, которым необходимо питание 3,5В. Поэтому они подключаются последовательно в количестве 60 штук. Режется такая полоска на отрезки, кратные 0,5 или 1 метру.

Полосы из светодиодов SMD 5630 потребляют мощность более 10 Вт/м и монтируются на металлическое основание, отводящее тепло. Повышенная яркость получается также установкой диодов в два ряда.

Хотя питающее напряжение равно напряжению сети, при включении в розетку свет будет моргать с частотой 50Гц. Даже при использовании выпрямительного моста свет будет мерцать. Необходимо дополнительно использовать конденсатор, сглаживающий пульсации и преобразовывающий пульсирующее напряжение в постоянное.

Если есть светодиодная лента 220в RGB, то подключение производится через такой же RGB-контроллер. Распространённые модели контроллеров рассчитаны на использование с =12В, поэтому желательно приобретать эти устройства в комплекте.

Как подключить светодиодную ленту к 220 вольт

Подключение устройства 220В аналогично подключению обычных лент. Длина отрезанного куска, в зависимости от модели, кратна 0,5 или 1 метру.

Выпрямитель состоит из четырёх диодов и конденсатора. Его можно изготовить своими руками или приобрести готовый в магазине или на радиорынке. Без конденсатора свет будет моргать с частотой 100Гц, что, согласно СаНПИНУ, недопустимо в жилых помещениях. Такие конструкции можно устанавливать в кладовке, лестничной клетке и других вспомогательных помещениях.

Особенности

У этих устройств есть преимущества перед обычными, 12 вольтовыми приборами:

  • не нужен дорогой блок питания;
  • небольшой ток позволяет подключаться тонкими проводами;
  • в продаже есть полоски со встроенным блоком питания, которые просто включаются в розетку.

Как и у любых устройств, у этих тоже есть недостатки:

  • на всех элементах присутствует высокое напряжение, что требует тщательной изоляции;
  • дешёвые устройства быстро выходят из строя и их нельзя отремонтировать заменой маленького участка из трёх диодов;
  • длина отрезка может быть только кратной 100 или 50 сантиметрам;
  • мерцание с частотой 100Гц не заметно глазам, но утомляет и вызывает головную боль.

Мощность источника питания

Мощность источника питания зависит от мощности суммарной нагрузки всех подключенных устройств. Все блоки питания имеют некоторый предел допустимой мощности, при превышении которой нарушается стабильность работы или возникает перегрев. Поэтому мощность нагрузки должна быть ниже максимально допустимой у блока питания. Запас по мощности источника может быть сколько угодно велик, растет только его масса и стоимость. Но это касается только блоков питания старого типа, в схемах которых используются понижающие трансформаторы. Современные импульсные блоки питания имеют ограничение по минимальному току нагрузки. Это также следует учитывать при проектировании осветительной сети.

То же самое относится и к драйверам. Принцип стабилизации тока подразумевает его стабильность при различных значениях выходного напряжения. Например, лампа на 12 В мощностью 1 Вт, потребляет ток 0.83 А (Закон Ома). Такой же ток должен выдавать драйвер. При подключении к нему этой лампы на выходе источника будет 12 В. Используя две таких лампы, соединенных последовательно, при том же потребляемом токе можно увидеть на выходе блока уже 24 В. И так далее, пока не наступит ограничение выходного напряжения. Тогда, соответственно, уже упадет и ток. Подключать параллельно несколько ламп к драйверу нельзя, по той причине, что выходной стабилизированный ток, поделится пропорционально между всеми потребителями.

Сложность проектирования освещения с драйверами и невозможность изменения количества подключенных приборов ограничивает их использование. А вот при выполнении наружного освещения, в диапазоне температур от минусовых до плюсовых, без стабилизаторов тока не обойтись.