Блок питания 24 В

Блок питания 24 В

В статье пойдет речь о простом, самодельном блоки питания на фиксированное напряжение 24 вольта. Максимальный ток нагрузки 2 ампера. Блок имеет защиту по превышению рабочего тока. Схема устройства показана на рисунке 1.


В схеме используется унифицированный накальный трансформатор ТН46-220-50.

Описание микросхемы

LM317T является регулятором напряжения. Если трансформатор будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.

Микросхема может быть исполнена в корпусе ТО-220:

или в корпусе D2 Pack

Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт – это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.

Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схемка!

Зарядное из компьютерного блока питания.

Автомобильное зарядное устройство или регулируемый лабораторный блок питания с напряжением на выходе 4 — 25 В и током до 12А можно сделать из не нужного компьютерного АТ или АТХ блока питания.

Несколько вариантов схем рассмотрим ниже:

Параметры

От компьютерного блока питания мощностью 200W, реально получить 10 — 12А.

Схема АТ блока питания на TL494

Несколько схем АТX блока питания на TL494

Переделка

Основная переделка заключается в следующем , все лишние провода выходящие с БП на разъемы отпаиваем, оставляем только 4 штуки желтых +12в и 4 штуки черных корпус, cкручиваем их в жгуты . Находим на плате микросхему с номером 494 , перед номером могут быть разные буквы DBL 494 , TL 494 , а так же аналоги MB3759, KA7500 и другие с похожей схемой включения. Ищем резистор идущий от 1-ой ножки этой микросхемы к +5 В (это где был жгут красных проводов) и удаляем его.

Для регулируемого (4В – 25В) блока питания R1 должен быть 1к . Так же для блока питания желательно увеличить емкость электролита на выходе 12В (для зарядного устройства этот электролит лучше исключить), желтым пучком (+12 В) сделать несколько витков на ферритовом кольце (2000НМ, диаметром 25 мм не критично).

Так же следует иметь ввиду , что на 12 вольтовом выпрямителе стоит диодная сборка (либо 2 встречно включенных диода), рассчитанная на ток до 3 А , ее следует поменять на ту , которая стоит на 5 вольтовом выпрямителе , она расчитана до 10 А , 40 V , лучше поставить диодную сборку BYV42E-200 (сборка диодов Шотки Iпр = 30 А, V = 200 В), либо 2 встречно включенных мощных диода КД2999 или им подобным в таблице ниже.

Если БП АТХ для запуска необходимо соединить вывод soft-on с общим проводом (на разъём уходит зеленым проводом).Вентилятор нужно развернуть на 180 гр., что бы дул внутрь блока ,если вы используете как блок питания, запитать вентилятор лучше с 12-ой ножки микросхемы через резистор 100 Ом.

Корпус желательно сделать из диэлектрика не забывая про вентиляционные отверстия их должно быть достаточно. Родной металлический корпус , используете на свой страх и риск.

Бывает при включении БП при большом токе может срабатывать защита , хотя у меня при 9А не срабатывает , если кто с этим столкнется следует сделать задержку нагрузки при включении на пару секунд.

Ещё один интересный вариант переделки компьютерного блока питания.

В этой схеме регулировка осуществляется напряжения (от 1 до 30 В.) и тока (от 0,1 до 10А).

Для самодельного блока хорошо подойдут индикаторы напряжения и тока. Вы их можете купить на сайте «Мастерок».

Диодный мост

Мы продолжим собирать простой блок питания своими руками. И для получения постоянного напряжения нам понадобится диодный мост, или по-другому его еще называют — диодный выпрямитель. Диодный мост служит для преобразования переменного напряжения вторичной обмотки в постоянное, так как для питания устройств в основном используется постоянное напряжение.

Диодный мост собран на четырех диодах VD1 — VD4. Рассмотрим работу диодного моста за один период. В первом полупериоде ток протекает через обмотку трансформатора, VD3 и VD4 заперты, и ток проходит через диод VD1 и выходит с диода +12В на нагрузку На схеме нагрузкой служит светодиод VD5 подключенный через токоограничивающий резистор R1.

С диода VD1 ток проходит через токоограничивающий резистор R1, через светодиод VD5, проходит через диод VD2, и уходит на вторичную обмотку трансформатора. На этом первый полупериод завершен.

Второй полупериод проходит также через обмотку трансформатора, но в обратном направлении. С обмотки трансформатора ток протекает теперь через диод VD3. VD1 и VD2 заперты, и далее ток через токоограничивающий резистор R1 на светодиод VD5, далее ток протекает через диод VD4 и уходит на трансформатор.

Вот мы рассмотрели и второй полупериод работы диодного моста.После диода выходное напряжение выходит пульсирующим, можно посмотреть на рисунке ниже.

Таким пульсирующим напряжением уже можно подключать некоторые устройства, которые не бояться пульсаций, например для зарядки автомобильного или другого аккумулятора. Но для питания приемника, усилителя, светодиодной ленты, и тд., такой блок питания не пойдет, к нему на выход диодов надо подключить фильтр, сглаживающий пульсации.

Варианты БП для самостоятельного монтажа

Блок питание выбирается исходя из того, какие схемы предполагается им запитывать. Если это устройства с низким потреблением тока, то и БП не обязательно делать мощный: вполне можно обойтись источником с током на 5 ампер. Рассмотрим несколько вариантов схем, а также как собирать самодельные блоки питания.

Простой БП 0-30 В

Одна из несложных схем источника питания с регулировкой выходного напряжения приводится на схеме.

Устройство выполнено всего на трех транзисторах и отличается высокой точностью напряжения на выходе благодаря использованию компенсационной стабилизации, а также применением недорогих элементов.

Изделие собирается на печатной плате и после монтажа практически сразу начинает функционировать. Главное, подобрать стабилитрон, который должен соответствовать максимальному напряжению на выходе.

Для корпуса подойдет любой пластиковый или металлический короб, который окажется под рукой, например, от компьютерного БП.

В такой корпус без проблем поместится трансформатор на 100 Вт и печатная плата. Имеющийся вентилятор можно оставить, подключив в разрыв его питания сопротивление для снижения оборотов.

Для измерения потребляемого нагрузкой тока, задействуем стрелочный амперметр, устанавливая его на переднюю панель из пластиковой коробки.

Читайте также  Капельный полив из бочки

Вольтметр можно использовать цифровой.

Завершив монтаж, проверяем выходное напряжение, изменяя положение переменного резистора.

Минимальное значение должно быть около нуля, максимальное – 30 В. Подсоединив нагрузку около 0,5 А, проверяем просадку напряжения на выходе – она должна быть минимальной.

Мощный импульсный БП

Рассмотрим схему блока питания с регулировкой по току и напряжению. Такие устройства иногда еще называют лабораторными, поскольку они подходят не только для запитки электронных схем, но и для заряди АКБ.

Этот БП обеспечивает регулировку напряжения в диапазоне 0-30 В и тока 0-10 А. Источник можно разделить на три части:

    Внутренняя схема питания, состоящая из источника напряжения на 12 В и ток минимум 300 мА. Назначение этого источника – запитка схемы БП.

Блок управления. Выполнен на микросхеме TL494 с простым драйвером. Резистор R4 позволяет регулировать максимальный порог напряжения, R2 – ток.

Силовая часть. Большую часть схемы можно задействовать из старого компьютерного блока питания. Для намотки трансформатора управления подойдет ферритовое кольцо R16*10*4,5, на котором наматывают провод МГТФ 0.07 мм² в количестве 30 витков одновременно в 3 провода. L1 мотают на кольце от того же БП, удалив старую обмотку и намотав медный провод диаметром 2 мм и длиной 2 м. Для L2 подойдет дроссель на ферритовом стержне.

Для размещения элементом схемы изготавливают печатную плату.

Если сборка выполнена правильно, блок питания начинает работать сразу. Чтобы была возможность управлять вентилятором по температуре, можно собрать простую схему на lm317.

На Ардуино

Радиолюбители с опытом иногда собирают блоки питания под управлением Ардуино. Таким образом удается создать контролируемый источник питания с такими режимами: может «отдыхать», функционировать в режиме экономии либо работать на ток в 10 А и разное выходное напряжение, если это требуется.

«Умный» блок питания представлен на схеме.

Для запитки микропроцессора ATmega задействуется импульсный стабилизатор. Благодаря наличию постоянного и стабилизированного напряжения 5 В блок питания можно оснастить разъемом USB, что позволит подзаряжать какие-либо устройства.

Печатную плату можно сделать по образцу.

Внешний вид устройства и внутреннее расположение компонентов представлено на фото.

Блок питания от 0 до 30 В на 10 ампер можно собрать своими руками по любой из представленных схем, а как именно сделать такое устройство, пошагово рассмотрено в инструкциях с фото-примерами. Для сборки простого источника питания потребуются начальные значения в области радиоэлектроники, умение обращаться с паяльником и минимальный перечень радиокомпонентов.

Блок питания с плавной регулировкой 0-24В, 3А.

Блок питания с плавной регулировкой 0-24В, 3А.

В этой статье мы рассмотрим стабилизированный источник питания с плавной регулировкой выходного напряжения 0. 24 вольта и током 3 ампера. Защита блока питания реализована на принципе ограничения максимального тока на выходе источника. Подстройка порога ограничения по току производится резистором R8. Выходное напряжение регулируется переменным резистором R3.

Принципиальная схема блока питания изображена на рисунке 1.

Перечень элементов:

R1. 180R 0,5W
R2, R4. 6К8 0,5W
R3. 10k (4k7 – 22k) reostat
R5. 7k5 0,5W
R6. 0.22R не менее 5W (0,15- 0.47R)
R7. 20k 0,5W
R8. 100R (47R – 330R)
C1, С2. 1000 x35v (2200 x50v)
C3. 1 x35v
C4. 470 x 35v
C5. 100n ceramick (0,01-0,47)
F1. 5A
T1. KT816 (BD140)
T2. BC548 (BC547)
T3. KT815 (BD139)
T4. KT819 (КТ805,2N3055)
T5. KT815 (BD139)
VD1-4. КД202 (50v 3-5A)
VD5. BZX27 (КС527)
VD6. АЛ307Б, К (RED LED)

Начнем по порядку:

Максимальное напряжение на выходе блока питания зависит от напряжения стабилизации стабилитрона VD5. В схеме применен импортный стабилитрон BZX24, его U стабилизации лежит в диапазоне 22,8…25,2 Вольта согласно описанию.

Вы можете скачать datashit на все стабилитроны этой линейки (BZX2…BZX39) по прямой ссылке с нашего сайта:

Так же в схеме можно применить отечественный стабилитрон КС527.

Понижающий трансформатор выбирается такой мощности, чтобы он был способен долговременно отдавать ток в нагрузку требуемой величины, а напряжение на вторичной обмотке было на 2. 4 вольта больше максимального напряжения на выходе блока питания. Соответственно и выпрямительный мост выбирается с запасом по току, чтобы не пришлось потом диоды моста или диодную сборку лепить на радиатор.

Как прикинуть мощность трансформатора? Например: на вторичке должно быть 25 вольт при токе 3 ампера, значит имеем 25 * 3 = 75 Ватт. Чтобы трансформатор мог долговременно отдавать в нагрузку 3 ампера увеличьте это значение процентов на 20. 30, т.е. 75 + 30% = 97,5 Вт. Отсюда следует, что необходимо выбрать 100 ваттный трансформатор.

Если у вас не нашлось готового подходящего трансформатора, и вам необходимо рассчитать и намотать его самому, прочитайте статью

Если вы решили применить в схеме тороидальный трансформатор, его расчет описан в статье:

Максимальное напряжение на выходе блока питания зависит от стабилитрона VD5, стоящего в коллекторной цепи транзистора Т1. Например: при использовании стабилитрона КС168, на выходе получим максимальное напряжение порядка 5 вольт, а если поставить КС527, на выходе поимеем максимальное напряжение вольт 25. Информацию по стабилитронам можете найти в статье :

Какого номинала должна быть фильтрующая емкость, стоящая после диодного моста? В нашем случае по схеме стоят две емкости в параллель С1 и С2 по 1000 микрофарад. А вообще емкость этого конденсатора выбирается из расчета порядка 1000 микрофарад на 1 ампер выходного тока. То есть, если вы захотите поднять максимальный ток БП до 5…6 Ампер, значит номиналы С1 и С2 можно поставить по 2200. 3300 мкФ каждая. Рабочее напряжение этих конденсаторов выбирается из расчета Uвх * 4/3 , то есть, если напряжение на выходе диодного моста составляет порядка 30 Вольт, значит (30*4/3=40) конденсаторы должны быть рассчитаны на рабочее напряжение не менее 40 Вольт. Можно поставить емкости с более высоким рабочим напряжением, но никак не меньшим расчетной величины. Конечно такой расчет грубоват, но тем не менее.
Электролит С4, стоящий на выходе блока питания выбирается в районе 200 микрофарад на 1 ампер выходного тока.

На Т5 собран ограничитель тока. Порог ограничения зависит от номинала резистора R6 и положения переменного резистора R8. В принципе переменник R8 можно и не устанавливать, а порог ограничения сделать фиксированным. Для этого базу транзистора Т5 соединим с эмиттером Т4 напрямую, а подбором резистора R6 установим необходимый порог. Например: при R6=0,39 Ом ограничение будет порядка 3 ампер.

Регулировка тока ограничения. Без нагрузки установите потенциометром R3 Uвых порядка 5 вольт. Подсоедините к выходу БП последовательно соединенные амперметр и резистор 1 Ом (мощность резистора ватт 10). Подстроить R8 на необходимый ток ограничения. Проверяем: понемногу выкручиваем R3 на максимум, при этом показания контрольного амперметра не должны изменяться.

В процессе работы транзистор Т1 слегка греется, поставьте его на небольшой радиатор, а вот Т4 калится основательно, на нем рассеивается приличная мощность, тут без радиатора внушительного размера не обойтись, а еще лучше к этому радиатору кулер от компьютера приспособить.

Читайте также  Отделка проемов без дверей

Как прикинуть мощность рассеяния Т1? Например: напряжение после диодного моста 28 вольт, а на выходе вольт 12. Разница составляет 16 вольт. Прикинем мощность рассеяния при максимальном токе 3 ампера, т.е. 12*3 = 36 Ватт. Если выходное напряжение выставим 5 вольт при токе 3 ампера, значит на транзисторе рассеится мощность (28 — 5) * 3 = 69 Ватт. Поэтому при выборе транзистора Т4 не поленитесь заглянуть в справочник по транзисторам, посмотрите на какую мощность рассеяния он рассчитан (в таблице колонка Рк max). Справочный материал по транзистору смотри на рисунке ниже (для увеличения картинки кликните на изображении):

● Диодный мост — по схеме собран на отдельных четырех диодах КД202А, они расчитаны на прямой ток 5 Ампер, параметры в таблице ниже:

5 Ампер это максимальный ток для этих диодов, и то установленных на радиаторы, поэтому для тока в 5 и более ампер лучше применять импортные диодные сборки ампер на 10.

Как альтернативу можете рассмотреть 10 Амперные диоды 10А2, 10А4, 10А6, 10А8, 10А10, внешний вид и параметры на картинках ниже:

Диоды 10A10

Диоды 10A10 параметры

На наш взгляд, лучшим вариантом выпрямителя будет применение импортных диодных сборок, например, типа KBU-RS 10/15/25/35 A, они и токи большие выдерживают, и места занимают гораздо меньше.

Параметры можете скачать по прямой ссылке:

Печатная плата блока питания изображена на следующем рисунке:

Какого номинала поставить предохранитель? В этой схеме стоит два предохранителя: по первичной обмотке трансформатора (выбирается на 0,5. 1 ампер больше максимального тока первичной обмотки), и второй перед выпрямительным мостом (выбирается на 1 ампер больше максимального тока ограничения БП).

С этой схемы можно выжать гораздо больше 3 ампер, для этого необходимо иметь транс-р, способный выдать необходимый ток, поставить диодный мост с запасом по току, пересчитать фильтрующие емкости, дорожки на плате, по которым будет протекать большой ток армировать толстым проводом, и применить параллельное соединение транзисторов в качестве Т4 как показано на следующем рисунке. Транзисторы так же ставятся на радиатор с принудительным обдувом вентилятором.

Если вы собираетесь использовать этот БП в качестве зарядного устройства для автомобильного аккумулятора, установите без нагрузки (аккумулятор не подключен) регулятором напряжения порядка 14,6 вольт на выходе и подключите аккумулятор. По мере заряда батареи плотность электролита увеличивается, сопротивление возрастает, соответственно ток будет падать. Когда аккумулятор зарядится и на его клеммах будет 14,6 вольт, зарядный ток прекратится.

Внешний вид печатной платы и собранного блока питания смотрите ниже:

Добавил к статье архив с печатной платой, для регулирующего транзистора применил макрос 2SC5200, принципиальную схему поправил, лейка выглядит так:

REG PSU 2SC5200 LAY6

REG PSU 2SC5200 LAY6 FOTO

Схемы блоков питания

Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:

  • однополярный;
  • двуполярный;
  • лабораторный импульсный.

Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).

Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична.

Простой лабораторный

Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:

  • понижающий трансформатор Tr ( 220/12…30 В);
  • диодный мост Dr для выпрямления пониженного переменного напряжения;
  • электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
  • потенциометр для регулировки выходного напряжения Р1 5 кОм;
  • сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
  • два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
  • для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.

В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.

К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.

Двухполярный источник питания

Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.

Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения.

Для такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.

Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.

Внимание! Установленные светодиоды гаснут при срабатывании защиты по току, если он превышает значение 3 А.

Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).

Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.

Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.

Лабораторный импульсный бп

Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.

Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.

Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.

Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.

Данный источник питания собран на микросхеме TL494.

Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности.

Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.

Особенности сборки схемы:

  • для минимизации потерь при выпрямлении используют диоды Шоттки;
  • ESR электролитов в фильтрах на выходе должен быть как можно ниже;
  • дроссель L6 от старых БП применяют без изменения обмоток;
  • дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
  • Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
  • для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.

Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.

Читайте также  Интерьеры домов из оцилиндрованного бревна фото

Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится.

Пошаговая инструкция

Сборка проводится согласно составленной схеме цепи. Микросхема была подобрана согласно особенностям цепи.

Сборка проводится следующим образом:

  1. На входе устанавливаем PTC термистор и диодные мосты.
  2. Затем, устанавливается пара конденсаторов.
  3. Драйвера необходимы для регулирования работы затворов полевых транзисторов. При наличии у драйверов индекс D в конце маркировки устанавливать диод FR107 не нужно.
  4. Полевые транзисторы устанавливаются без закорачивания фланцев. При проведении крепления к радиатору, используют специальные изоляционные прокладки и шайбы.
  5. Трансформаторы устанавливаются с закороченными выводами.
  6. На выходе диоды.

Блок питания для шуруповерта

Чтобы инструмент смог работать от сети, потребуется блок, который выдает на выходе от 12 до 18 (14, 16) вольт. В этом случае ориентируются на модель шуруповерта. Сетевое зарядное устройство можно сделать из имеющегося корпуса аккумулятора. В этом случае сначала оценивают его габариты, чтобы понять, поместится ли зарядка внутри. Небольшие источники питания чаще помещают в корпус шуруповерта.

  1. Сначала разбирают аккумулятор, чтобы можно было вынуть все внутренности. Если корпус был склеен, то для этого пользуются ножом, которым вскрывают шов.
  2. Определяют силу тока и напряжение. Так как первый параметр часто не указывают, результат находят самостоятельно — делят мощность на напряжение (ватты на вольты).
  3. Припаивают электропровод к контактам зарядного прибора: латунные поверхности перед операцией обязательно обрабатывают кислотой.
  4. Соблюдая полярность, обратные концы провода соединяют с выходом батареи. В корпусе аккумулятора делают отверстие для кабеля.
  5. Провод фиксируют изолентой. На другом конце его должна быть вилка для включения в сеть.

Есть несколько вариантов получения блока питания. Самый простой выход — покупка готового устройства. Если планируют изготовить самодельный БП, то в данном случае схема — первое, в чем появляется необходимость. Чтобы избежать ошибок, нужно точно соблюдать последовательность соединения всех элементов, а также составить список необходимых мини-электроприборов.

Переделка «китайца» под шуруповерт

Эта самый простой способ получить необходимый источник, так как китайские приборы доступны почти повсеместно, к тому же недороги. Эти блоки питания рассчитаны на большее выходное напряжение — на 24 вольта. Поэтому первая задача мастера — понижение выходного напряжения до значений, необходимых инструменту (12-18 В).

Чтобы достичь цели, производят замену резисторов: родной R10 убирают, а в схему вставляют тот, который можно настраивать. Такая работа состоит из нескольких этапов:

  1. Сначала выпаивают постоянный резистор, имеющий перманентное сопротивление 2320 Ом.
  2. Затем вставляют настраиваемый резистор, на котором заранее выставляют значение 2300 Ом. Если этого не сделать, конструкция работать откажется.
  3. На блок подают электричество, чтобы определить значения выходных параметров. На измерительном приборе выставляют диапазон постоянного напряжения.
  4. Регулировкой сопротивления добиваются оптимального напряжения (12, 14, 16 или 18 вольт) и силы тока, не превышающей 9 ампер. Иначе преобразованный блок питания для шуруповерта из-за больших нагрузок вскоре выйдет из строя.

Модифицированную конструкцию крепят на место старого аккумулятора. Все токопроводящие элементы изолируют. Для вентиляции просверливают дополнительные отверстия, корпус закрывают. Последний этап — проверка работы шуруповерта.

Почти аналогичным образом можно переделать практически любой покупной блок питания. В этом случае помимо замены резистора может потребоваться другое преобразование — встраивание в схему дополнительных диодов.