Плотность алюминия

Единица измерения

Плотность алюминия и любого другого материала – это физическая величина, определяющая отношения массы материала к занимаемому объему.

  • Единицей измерения плотности в системе СИ принята размерность кг/м 3 .
  • Для плотности алюминия часто применяется более наглядная размерность г/см 3 .

Плотность алюминия в кг/м 3 в тысячу раз больше, чем в г/с м 3 .

Удельный вес

Для оценки количества материала в единице объема часто применяют такую не системную, но более наглядную единицу измерения как «удельный вес». В отличие от плотности удельный вес не является абсолютной единицей измерения. Дело в том, что он зависит от величины гравитационного ускорения g, которая меняется в зависимости от расположения на Земле.

Зависимость плотности от температуры

Плотность материала зависит от температуры. Обычно она снижается с увеличением температуры. С другой стороны, удельный объем – объем единицы массы – возрастает с увеличением температуры. Это явление называется температурным расширением. Оно обычно выражается в виде коэффициента температурного расширения, который дает изменение длины на градус температуры, например, мм/мм/ºС. Изменение длины легче измерить и применять, чем изменение объема.

Удельный объем

Удельный объем материала – это величина, обратная плотности. Она показывает величину объема единицы массы и имеет размерность м 3 /кг. По удельному объему материала удобно наблюдать изменение плотности материалов при нагреве-охлаждении.

На рисунке ниже показано изменение удельного объема различных материалов (чистого металла, сплава и аморфного материала) при увеличении температуры. Пологие участки графиков – это температурное расширение для всех типов материалов в твердом и жидком состоянии. При плавлении чистого металла происходит скачок повышения удельного объема (снижения плотности), при плавлении сплава – быстрое его повышение по мере расплавления в интервале температур. Аморфные материалы при плавлении (при температуре стеклования) увеличивают свой коэффициент температурного расширения [2].

Теплопроводность латуни и бронзы

В таблице приведены значения теплопроводности латуни, бронзы, а также медно-никелевых сплавов (константана, копели, манганина и др.) в зависимости от температуры — в интервале от 4 до 1273 К.

Теплопроводность латуни, бронзы и других сплавов на основе меди при нагревании увеличивается. По данным таблицы, наибольшей теплопроводностью из рассмотренных сплавов при комнатной температуре обладает латунь Л96. Ее теплопроводность при температуре 300 К (27°С) равна 244 Вт/(м·град).

Также к медным сплавам с высокой теплопроводностью можно отнести: латунь ЛС59-1, томпак Л96 и Л90, томпак оловянистый ЛТО90-1, томпак прокатный РТ-90. Кроме того, теплопроводность латуни в основном выше теплопроводности бронзы. Следует отметить, что к бронзам с высокой теплопроводностью относятся: фосфористая, хромистая и бериллиевая бронзы, а также бронза БрА5.

Медным сплавом с наименьшей теплопроводностью является марганцовистая бронза — ее коэффициент теплопроводности при температуре 27°С равен 9,6 Вт/(м·град).



Примеси в медных сплавах

отсюда

Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.

Образующие с медью твердые растворы

К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность. К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1. Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.

Не растворяющиеся в меди примеси

Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением.



Сравнение

Электропроводность меди в полтора раза выше, чем у алюминия, но при этом плотность алюминия в 3,3 раза меньше, чем у меди. О цене и говорить не приходится – после освоения промышленной технологии производства алюминия его стоимость очень сильно упала и сейчас она значительно меньше, чем у меди. Эти обстоятельства и предопределили использование алюминия для выпуска многожильных проводов и кабелей. Обратите внимание, когда увидите ЛЭП высокого напряжения: все провода выполнены именно из алюминия. Так и дешевле, и нагрузка на опоры гораздо ниже. Ну а что электропроводность меньше – с этим приходится мириться.

Используется медь и для производства бронзы. В древности из нее изготавливали холодное оружие и орудия труда, пока не была освоена выплавка железа. Но и позже из бронзы лили пушки, причем это продолжалось довольно долго, вплоть до 19 века. Из бронзы отлиты Царь-пушка и Царь-колокол. Кроме этого, медь благодаря высокой коррозионной стойкости нашла применение при изготовлении труб для транспортировки различных жидкостей и газов, а также в некоторых других отраслях промышленности.

Алюминий называют «крылатым металлом». Это название говорит о второй масштабной области его применения (после электротехнической). При соединении алюминия (95,6 %) и меди (4,4 %) получают сплав, который называется дюралюминий, или дюраль. Обладая плотностью, близкой к плотности алюминия, он имеет значительно более высокие прочностные характеристики, поэтому широко используется для производства самолетов.

Показатель плотности металла

Параметр плотности любого вещества рассчитывается как соотношение массы к объему и измеряется в г/ см³. Использование этого показателя для арифметических расчетов позволяет определить вес заготовок или изделий.

Часто для оценки количества материала в единице объема используют показатель удельного веса, который в отличие от плотности имеет только количественную характеристику.

Алюминий, плотность которого составляет 2712 кг/м3, является самым популярным материалом для различных отраслей промышленного производства. Благодаря особым физическим и химическим характеристикам металл используют в качестве лигатурного компонента сплава с золотом.

Температура плавления равна 660 °C. Кипит металл при температуре 2519 °C. Плотность жидкого металла составляет 2560–2640 кг/м3, в твердом состоянии показатель равен 2712 кг/м3. Расплавленный химически чистый металл при температуре 660 °C имеет плотность 2,368 г/см³, а при 1173 °C – 2,304 г/см³.

Алюминий обладает высокой теплопроводностью, которая учитывается наряду с физическими параметрами состава. Плотность алюминиевых сплавов незначительно отличается от показателя плотности для чистого металла.

Сплавы алюминия

Сам по себе рассматриваемый металл является довольно мягким и непрочным. Его твердость по шкале Мооса составляет 3, а прочность на разрыв не превышает 200 МПа. Такие низкие показатели прочности ограничивают его использование в качестве конструкционного материала. Однако уже небольшое количество примесей других элементов способно кардинально изменить физические свойства металла. Так, добавка всего нескольких процентов меди и соответствующая термическая обработка повышают его сопротивление на разрыв в 2 раза.

Все сплавы на основе алюминия обладают более высокими механическими свойствами, включая способность к механической и термической обработке. Однако понижается коррозионная стойкость металла. Основными элементами, которые добавляют в алюминий, являются медь, магний, марганец, железо, кремний и цинк. С ними атомы алюминия образуют упрочняющие фазы.

Определение удельного веса металла

Для начала следует определить, что же такое удельный вес. Так легче будет впоследствии разбираться во всех показателях, а также использовать полученные знания при обработке заготовок из, созданных из этого прочного материала.

Удельным весом называют отношение однородного тела из этого вещества к объёму данного материала. Из этого можно сразу выделить интересный момент, заключающийся в том, что по сути удельный вес металла является его плотностью.

Читайте также  Отличие латуни от бронзы

Данная величина, то есть удельный вес металла, измеряется в кг/куб. м. Это единица измерения, чаще всего указываемая в различных технических справочниках. Иногда могут указываться и другие единицы измерения, но в отечественных источниках они встречаются гораздо реже.

Если же справочника, содержащего необходимые данные о том или ином металле, под рукой нет, то можно рассчитать удельный вес по известной формуле:

В данной формуле y обозначает удельный вес, который впоследствии придётся рассчитать, Р — это вес, а V — это объём. Использую эту формулу, можно уже при известных данных о весе и объёме выполнить расчёт.

Расчет удельного веса

На сегодняшний день разработано множество методик и алгоритмов измерения и расчета не только плотности, но и удельного веса, позволяющих даже без помощи таблиц определять этот важный параметр. Зная удельный вес, который у разных сплавов меди и чистого металла отличается, как и значение плотности, можно эффективно подбирать материалы для производства деталей с заданными параметрами. Такие мероприятия очень важно выполнять на стадии проектирования устройств, в составе которых планируется использовать детали, изготовленные из меди и ее сплавов.

Удельный вес, значение которого (как и плотности) можно посмотреть и в таблице — это отношение веса изделия, изготовленного как из металла, так и из любого другого однородного материала, к его объему. Выражается это отношение формулой γ=P/V, где буквой γ как раз и обозначается удельный вес.

Нельзя путать удельный вес и плотность, которые являются разными характеристиками металла по своей сути, хоть и обладают одинаковым значением для меди.

Зная удельный вес меди и используя формулу для расчета этой величины γ=P/V, можно определить массу медной заготовки, имеющей различной сечение. Для этого необходимо перемножить значение удельного веса для меди и объем рассматриваемой заготовки, определить который расчетным путем не представляет особой сложности.

Классификация сплавов

Для классификации рассматриваемых сплавов во всем мире используют четырехзначные цифры, причем первая цифра говорит об основной (фазообразующей) добавке к алюминию. Существуют следующие марки:

  • 1XXX — на 99% чистый металл с добавками Fe и Si;
  • 2XXX — сплавы с медью для самолетной промышленности;
  • 3XXX — добавка марганца (производство алюминиевых банок для напитков);
  • 4XXX — добавка кремния;
  • 5XXX — сплав с магнием;
  • 6XXX — добавки магния и кремния;
  • 7XXX — сплавы с цинком и магнием для производства различных конструкций самолетов;
  • 8XXX — другие элементы.