Датчики температуры, термопары ХА

Датчики температуры, термопары ХА

Материал оболочки: сталь 12Х18Н10Т
Длина монтажной части: 50 мм

ДТПК предназначены для измерения температуры поверхностей при помощи закладных деталей в окислительных и нейтральных газовых средах, не содержащих веществ, вступающих во взаимодействие с материалом термопар и влажностью не более 80 % .

Материал оболочки: сталь 12Х18Н10Т
Длина монтажной части: 50 мм

Предназначены для измерения температуры поверхностей при помощи закладных деталей в окислительных и нейтральных газовых средах, не содержащих веществ, вступающих во взаимодействие с материалом термопар и влажностью не более 80 %.

Диаметр: 6 мм
Материал оболочки: сталь 12Х18Н10Т
Длина монтажной части: 80 мм

Термопреобразователи предназначены для непрерывного измерения температуры различных рабочих сред (пар, газ, вода, сыпучие материалы, химические реагенты и т.п.), не агрессивных к материалу корпуса датчика.

Материал оболочки: сталь 12Х18Н10Т
Длина монтажной части: 10мм

ДТПL предназначены для непрерывного измерения температуры различных рабочих сред (пар, газ, вода, сыпучие материалы, химические реагенты и т.п.), не агрессивных к материалу корпуса датчика.

Материал оболочки: сталь 12Х18Н10Т
Длина монтажной части: 50 мм

ДТПL предназначены для непрерывного измерения температуры различных рабочих сред (пар, газ, вода, сыпучие материалы, химические реагенты и т.п.), неагрессивных к материалу корпуса датчика.

Диаметр: 5 мм
Материал оболочки: латунь
Длина монтажной части: 20 мм

Данная модель термопреобразователя используется для осуществления непрерывного контроля температуры как жидкой, так и твердой рабочей среды. Это может быть пар, вода, газ, какие-либо сыпучие материалы, а также химические реагенты. Главное, чтобы среда не была агрессивной и не смогла повредить корпус самого датчика.

Диаметр: 6 мм
Материал оболочки: сталь 12Х18Н10Т
Длина монтажной части: 32 мм

ДТПL предназначены для непрерывного измерения температуры различных рабочих сред (пар, газ, вода, сыпучие материалы, химические реагенты и т.п.), не агрессивных к материалу корпуса датчика.

Термопара представляет собой датчик, предназначенный для измерения температуры различных сред (пара, газа, жидкости, сыпучих материалов, химических реагентов и многого другого). Этот прибор представляет собой два проводящих электричество элемента, которые свариваются между собой, образуя спай. Устройство начинает генерировать напряжение, величина которого зависит от значения температуры.

Технические характеристики

термопар ТХА-1 И ТХК-1

Тип и вид исполнения Материал Степень защиты от пыли и влаги Диапазон измеряемых температур °С Показатель тепловой инерции, с Условное давление, МПА
Защитная арматура Головка
ТХА-1-1 12Х18Н10Т полиамид,
металл
IP65 −40…800 40 (для И)
10 (для Н)
6,3
ТХК-1-1 −40…600
ТХА-1-2 12Х18Н10Т полиамид,
металл
IP65 −40…800 40 (для И)
10 (для Н)
6,3
ТХК-1-2 −40…600
ТХА-1-3 12Х18Н10Т полиамид,
металл
IP65 −40…800 20 (для И)
8 (для Н)
6,3
ТХК-1-3 −40…600
ТХА-1-4 12Х18Н10Т полиамид,
металл
IP65 −40…600 20 (для И)
8 (для Н)
6,3
ТХК-1-4 −40…600

По устойчивости к воздействию температуры и влажности окружающей среды термопары соответствуют группе исполнения С2 по ГОСТ Р 52931: −40…+70 °С.

По устойчивости к механическим воздействиям термометры соответствуют группе N3 по ГОСТ Р 52931.

Климатическое исполнение — У3, ТВ.

Возможно изготовление ТП в климатическом исполнении УХЛ2 для работы при температурах от −60 до +70 °С.

Термопары, имеющие тропическое исполнение имеют в обозначении дополнительно ТВ (например, ТХА-1-3 ТВ).

Номинальные статические характеристики (НСХ)

их обозначения, материал термоэлектродов согласно ГОСТ 6616-94

Тип термопары НСХ Материал термоэлектродов
положительный отрицательный
ТХА XA(K) хромель алюмель
ТХК XK(L) хромель копель

Положительный термоэлектрод маркируется красным цветом.

Значения допусков по температуре термопар типа ТХА и ТХК

Термопары выпускаются по классу допуска 1 или 2 согласно ГОСТ 6616-94

Тип термопары Класс Диапазон температур, °С Предел допускаемого
отклонения от НСХ, °С
ТХА 1 от −40 до 375 1,5
свыше 375 до 1000 0,004·|t|
2 от −40 до 333 2,5
свыше 333 до 1200 0,0075•|t|
ТХК 2 от −40 до 300 2,5
свыше 300 до 800 0,0075•|t|

где |t| – абсолютное значение температуры, °С

Способ производства

Хромель и алюмель – одни из самых трудоёмких в производстве. Сложность технологического процесса заключается в необходимости строгого контроля пропорций компонентов во время плавления, так как ключевые характеристики конечного продукта обусловлены в основном соотношением материалов. Составы производят в индукционных печах различной частотности.

Порядок плавления следующий. Большую часть хрома загружают в жидкую ванну, оставляя несколько килограмм для коррекции. Затем вводят никель и одновременно флюс. Плавление ведется в интенсивном режиме. Раскисление металла производится добавлением марганца и магния. Затем проводится определение термоэлектродвижущей силы и корректировка содержания хрома.

Аналогичным способом производятся другие никелевые сплавы. Различия заключаются в очередности загрузки материалов и окислителях. Например, производство сплава алюмель производится следующим образом. Загружаются никель и флюс, уже после этого остальные компоненты. В качестве окислителя используется магний. Таким образом получают алюмелевые сплавы, хромель и копель.

Копель

Это медно-никелевый сплав. Медь в нем служит основой, ее содержание – около 55 %. Никеля вместе с примесью кобальта содержится 42,5—44 %. Из других компонентов наибольшая доля приходится на марганец – до 1 %. Остальное – это железо, углерод, кремний в количествах, измеряемых сотыми долями процента.

Копель имеет невысокий верхний предел измерений – 600 о С (до 800 о С – по спецзаказу). В паре с железом, медью и хромелем обладает высоким термо-ЭДС, что повышает точность измерений. Термопара хромель-копель при 500 о С выдает напряжение 40,3 мВ, тогда как ближайший «конкурент», железо-константан, показывает лишь 37 мВ. ТЕРМОЭДС большинства других термопар при тех же условиях не превышает 10 мВ. (Здесь приведены табличные значения из ГОСТ Р 8.585-2001).

Проволока копель применяется для изготовления термопар типов L и M. Тип М используется для измерения температур до 100 о С. Купить термопары этого типа стоит для измерения низких температур. Нижняя граница их рабочего диапазона простирается до -200 о С.

Константан проволока.

Марка сплава МНМц 40-0,5.
Медно-никелевый сплав, константановая проволока имеет высокое электрическое сопротивление, процентный состав:

  • Ni 39-41
  • Mn 1-2
  • Сu остаток

Податлив механическим обработкам, применяется в производстве электронагревательных частей с нагревом до 400-500 градусов, для термопар, реостатов, измерительных приборов низкого класса точности, для компенсационных проводов, нормальных эталонов.

Группа предприятий Союз производитель проволоки хромель, алюмель, копель, константан по ГОСТ 1790-77, ГОСТ 1791-67, ГОСТ 5307-77 и многочисленным ТУ (техническим условиям). Наша продукция пользуется спросом не только в России, но и в странах ближнего и дальнего зарубежья:

  • Казахстан,
  • Узбекистан,
  • Беларусь,
  • Монголия.

Качество выпускаемой продукции ежегодно подтверждаем на отечественных и иностранных выставках, о чём свидетельствуют многочисленные награды. Имея свою сырьевую базу мы снижаем себестоимость продукции, купить проволоку хромель, алюмель, копель, константан можно по цене завода, как оптом, так и в розницу.

Делаем поставки во все уголки страны, наиболее востребована продукция:

  • в Москве,
  • в Спб,
  • в Крыму,
  • в Екатеринбурге,
  • в Ижевске,
  • в Новосибирске,
  • в Иркутске.
Читайте также  Мангал из баллона

ПРЕИМУЩЕСТВА

  • высокое качество изделий, изготовленных на современном оборудовании;
  • возможность изготовления датчиков под заказ, с нестандартными параметрами и размерами;
  • широкий диапазон измеряемых температур;
  • надежная конструкция — керамические бусы в металлическом корпусе;
  • доступная цена на термопары.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ПРИМЕНЕНИЕ

Термопара широко применяется для самых различных целей:

  • обеспечение непрерывного контроля температуры в помещениях, зданиях, промышленных цехах. Например, контроль комнатной температуры, температуры в системе вентиляции, контроль и поддержание температуры на складах и в хранилищах;
  • обеспечение непрерывного контроля температуры среды (воды, пара, масла и т.д.) для стабильного поддержания заданных технологических условий, что необходимо для эффективности и безопасности процессов. Например, термопара для котла;
  • поддержание необходимой температуры в гидравлических системах;>/li>
  • обеспечение контроля/поддержания температуры в оборудовании, где она является важным технологическим фактором (сушильные печи, холодильные камеры, теплообменники и т.д.).

Согласно Номинальных статических характеристик преобразования ГОСТ Р8.585-2001 термопара – устройство, состоящее из 2-х разнородных контактирующих друг с другом проводников, предназначенное для измерения температуры. При изменении температурного режима на одном участке создается напряжение, вследствие чего происходит конвертация температуры в электроток.

Конструкция элемента устроена из двух разнотипных проводников, которые соединяются друг с другом в одном узле. Существует три типа соединений:

  • спайка;
  • ручная скрутка;
  • сварка.

Зачастую в виде проводящих электроэнергию элементов применяется металлический проводник, однако встречаются случаи, когда вместо него используют полупроводниковые устройства.

Параметры устройства определяет материал, из которого изготовлены проводники. Понятно, что любой металл образует сопротивление, значит будет производить электроток. Но для корректной работы термопары используются определенные сплавы, которые выдают прогнозируемые вводные и точно с минимальной погрешностью определяют зависимость между температурой и сопротивлением. Для определенного диапазона должен использовать определенный материл.

Говоря простым языком, термопара, в зависимости от материалов, из которых состоят проводники, позволяет определять температурный режим в разнообразных диапазонах значений. В целом, термопара определяет температуру ориентировочно от -250°С до +2 000°С.

ВИДЕО: Измерение температуры с помощью термопары

Принцип действия термопары

Вне зависимости от имени производителя, работа всех термопар основывается на термоэлектрической схеме, разработанной в 1821 году известным физиком Т.И. Зеебеком. Принцип действия термопары заключается в поочередном соединении двух разновидных переходника в одно замкнутое кольцо. Первый узел предназначен для нагрева, в результате чего, по кольцу образовывается электрический движущий заряд, который называется – термо-ЭДС. Под влиянием ЭДС-силы, по цепочке протекает электрически ток.

Схематическая работа устройства

Сама область нагрева называется узлом нагревательного предназначения, второй конец обозначается как холодный спай.

Чтобы измерить значение микро или милливольт электрической движущей силы, следует разъединить кольцо и соединить его при помощи микровольтметра. Количество милливольт полностью зависит от интенсивности нагрева соединений и температурного режима холодного узла. Принцип работы простым языком базируется на разности значений температуры двух соединительных спаев, между холодным и горячим обозначением.

Получается, что если область спая двух разных проводов нагреть, то в зоне несоединенных концов образуется разносторонний потенциал, измеряемый специальным инструментом. Преобразователи, разработанные по инновационным технологиям, возникшую разность электрической силы переводят в цифровые символы, обозначающие температурный режим нагрева соединенных узлами частей.

Конструкция устройства

Устройство производится разных форм и размеров. Подразделяется по конструктивному производству на два основных типа:

  • термопары, не имеющие корпуса;
  • с кожухом, служащим в качестве защиты.

В первом случае устройство в месте соединения не имеет закрытого корпуса, выполняющего защитную функцию от разнообразных воздействий внешней окружающей среды. Данный вид обеспечивает быстрое определение инертности и температурного режима, не затрачивая на процесс много времени.

Термопара для котельного оборудования

Второй тип производится подобно зонду, который выполнен из металлической трубы с хорошей внутренней изоляцией, способной противостоять высоким температурным показателям. Изнутри термопар оснащен термоэлектрической системой. Конструкция с защитным корпусом не поддается воздействиям агрессивной среды.

Разновидности термопары

Принцип работы термопара достаточно прост и понятен, однако, прежде чем создать устройство своими руками, следует знать, чем отличаются такие модификации как ТХА,TKX, ТПП, ТСП, ТПР и ТВР, а также, по каким критериям и группам они распределяются.

  • Группа Е – состоит из комбинированного материала — хромель-константан. Соединительный спай обладает повышенной производительностью – более 69 мкВ/ о С, подходящей для криогенного применения. Помимо всего, система не имеет магнитные свойства, а температурный режим варьируется от – 50°С до + 740°С.
  • Группа J – термоэлектроны производятся из положительного железа и отрицательного типа константаны. Разбег функционирования данной серии термопара меньше, чем в прошлой группе -40°С — + 750°С, однако показатель чувствительности более высокий – 50 мкВ/°С.
  • Группа К – самый распространенный тип устройств, состоящий из комбинации материалов – алюминий и хромель. Производительность системы равняется 40 мкВ/°С, функционирование происходит в пределах температурных показателей от – 200°С до 1 350°С. Следует помнить, что даже при низком уровне окисления в диапазоне температуры 800-1050°С, элемент из хромеля отсоединяется и приобретает намагниченное состояние, что называется «зеленая гниль». Данный фактор отрицательно сказывается на функционировании регулятора.
  • Группа М – применяется в комплектациях печей вакуумного вида. Рабочие силы варьируются от -260 до + 1400°С с максимальной погрешностью в 2 градуса.

Принцип работы термопары

  • Группа N – устройство выпускается для использования в устройствах обладающих температурными обозначениями – 270 и 1300°С, что является гарантией хорошей работоспособности и устойчивости перед окислительными процессами. Чувствительность не превышает 40 мкВ/°С.
  • Группы В, S, R отличаются стабильной работой с более пониженным ЭДС – 10мкВ/°С. Из-за плохой чувствительности, используется исключительно для определения повышенных температур.
  • Группы В, С, S – первый символ обозначает модификацию, подходящую для измерения температуры до 1 800 о С, S – 1 600°С, С – до 1 500.
  • Рениево-вольфрамовые термопары применяются для измерения высоких температур 25 000°С и менее. Также устройство предназначено для устранения окислительной атмосферы, разрушающей материал.

Монтаж

Принципиальной разницы между установкой российского или европейского оборудования нет – схема везде одинакова. Мы опишем самый простой способ.

  1. Откручиваете гайку внутри резьбового соединения к газопроводу.
  2. На самой термопаре откручиваете компенсационный винт.
  3. В отверстие монтажного кронштейна вставляете термопару.
  4. Протрите место соединения ветошью резьбовое соединение и гайку.
  5. Закрутите соединение до упора, но не затягивайте слишком сильно. Если есть необходимость, можно использовать прокладку.

Контролер газовой плиты должен быть соединен максимально плотно, но чтобы его можно было снять по мере надобности.

Термопара для печи

Обратите внимание на то, чтобы обе трубы были направлены строго вниз.

Теперь разбираемся, как работает. Концевой выключатель всегда расположен на несколько сантиметров ниже пленума под автоматом контроля безопасности плиты. Когда пленум нагревается до предела, выключатель дает сигнал на отключение горелки и сразу же срабатывает вентилятор. В этот момент происходит резкое снижение температуры.

На некоторых устройствах вентилятор не останавливается. Причиной этого может быть выключенный контроль вентилятора (посмотрите на рычаг, он должен быть на отметке «вкл») либо выход из строя термостата. Как вариант, может быть установлен ручной режим вместо автоматического.

Читайте также  Зарядное устройство на тиристоре

После установки устройства необходимо проверить правильность работы. И если настройка происходит в лабораторных условиях, то калибровать термопару можно и собственноручно.

Для этого снимаете крышку блока управления и смотрите на циферблат. Со стороны вентилятора есть 2 датчика, которые изначально настроены на 25°F. Вам нужно выставить верхний на 115°F, нижний – не меньше 90°F.

Если во время градуировки или калибровки отчетливо слышен запах газа, необходимо проверить уплотнители или вызвать службы газа на предмет выявления утечки.

Преимущества и недостатки применения измерителя

Температурный датчик, невзирая на простоту в устройстве, обладает как преимуществами, так и недостатками.

  • Широкий диапазон температурных режимов, делающих устройство самым устойчивым контактным датчиком перед высокими показателями.
  • В результате нарушения целостности спая можно полностью заменить узел или создать прямой контакт непосредственно через измеряемые системы.
  • Простота устройства, прочность и большой эксплуатационный срок.

  • При установке температурного датчика необходимо регулярно контролировать изменения напряжения холодных спаев. Для облегчения задачи требуется приобрести дополнительный термистор. Также можно заменить устаревший прибор полупроводниковым сенсором, способным автоматически вносить изменения в ТЭДС.
  • Подверженность к поражению коррозией, в результате чего происходит термоэлектрическая недостаточность и нарушение градуировочных характеристик.
  • Электроды состоят из материалов, которые не считаются химически инертным, поэтому при нарушении герметичности корпуса система становится подверженной агрессивным процессам окружающей среды.
  • Длинные термопарные провода образовывают электромагнитное поле.
  • Возникают сложности в процессе создания вторичного преобразователя сигналов из-за несущественного взаимодействия ТЭДС и температурных режимов.
  • Для стабильной работы с термической инерцией, обязательным условием термопара считается обеспечение качественной электроизоляцией, заземление функционирующих спаев, предостерегающих от возникновения утечки в землю.

ВИДЕО: Сравнение термосопротивления и термопары. Основы измерения температуры от Emerson

Документация

Свидетельство о признании № 001350 бессрочное выдано 16.06.2006 г. (Украина)

Как сделать термопару

Независимо от того, создаете вы электропечь своими руками, или заменяете поврежденные элементы, важно соблюдать правила установки всех деталей. Подключение термопары к преобразователю может осуществляться одним из вариантов:

  • Дифференциальным. Применяются два спаянных проводника, с разными ЭДС коэффициентами. Преобразователь подсоединяется к месту разрыва одного из электродов.
  • Простым. Подключение системы выполняется напрямую к двум термо проводам.

Чтобы дистанционно подключить термопары, необходимо выбрать провода. Есть два основных типа

  • Компенсационные. Чаще всего применяют для термопар, выполненных из драгсплавов. Их состав отличается от электродного.
  • Удлинительные. Выполняются из материала, используемого для электродов, но имеют иное сечение.

Материалы для термопары имеют свои особенности, достоинства и недостатки. Учитывайте все факторы, чтобы выбрать наиболее подходящий вариант, для конкретных задач

Если Вам нужна многофункциональная, хорошая муфельная печь обращайтесь в ТД «Лабор». Специалисты компании помогут разобраться во всех деталях и подберут оптимальный вариант оборудования, учитывая все производственные нюансы!