Схемы Подключения Биполярных Транзисторов

Схемы Подключения Биполярных Транзисторов

В импортных усилителях очень часто применяется мощная комплементарная пара 2SA и 2SC Мы рассмотрим их позднее при подробном изучении схемы усилительного каскада с общим эмиттером.


Конденсатор Ср является разделительным. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Вольт-амперная характеристика стабилитрона представлена на рис.
Биполярные транзисторы

По рабочей частоте транзисторы делятся на низкочастотные, — рабочая частота не свыше 3 МГц, среднечастотные — 3…30 МГц, высокочастотные — свыше 30 МГц.

Рисунок 3.

Автор статьи предлагал регулировать частоту вращения коллекторного двигателя изменением длительности импульсов в обмотке управления ОУ.

Но параметры германиевых транзисторов были нестабильны, их самым большим недостатком следует считать низкую рабочую температуру, — не более

Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством.

СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА. ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ [РадиолюбительTV 42]

Схема с общим эмиттером

Наиболее распространенной схемой включения транзистора является схема с общим эмиттером (ОЭ). Это связано с наибольшим усилением этой схемы по мощности. Схема с общим эмиттером обладает усилением, как по напряжению, так и по току. Функциональная схема включения транзистора с общим эмиттером приведена на рисунке 1.


Рисунок 1. Функциональная схема включения транзистора с общим эмиттером

На данной схеме цепи питания коллектора и базы транзистора не показаны. Мы рассмотрим их позднее при подробном изучении схемы усилительного каскада с общим эмиттером. Входное сопротивление схемы включения транзистора с общим эмиттером определяется входной характеристикой транзистора. Оно зависит от базового, а, следовательно, и коллекторного тока транзистора. Для большинства маломощных усилителей оно составляет значение порядка 2,5 кОм.

Что касается амплитудно-частотной характеристики схемы с общим эмиттером, то в данном включении транзистора верхняя частота усиления будет минимальная по сравнению с остальными схемами включения транзистора. Верхняя частота усиления транзистора, включенного по схеме с общим эмиттером, ограничена частотой fβ (fh21э). [Подробнее]

Основной функцией биполярного транзистора (БТ) является увеличение мощности входного электрического сигнала. Эти полупроводниковые радиокомпоненты появились, как альтернатива электровакуумных триодов, и со временем практически вытеснили их из отрасли. Справедливости ради заметим, что лампы применяются и до сих пор, но в очень и очень узком сегменте аппаратуры специального назначения. В массовой же радиотехнике используются, в основном, транзисторы – биполярные и их ближайшие «родственники» полевые.

Ключевое преимущество этих элементов состоит в миниатюрности. Электровакуумный усилитель со схожими характеристиками оказывается в несколько раз крупнее биполярного транзистора. Вследствие этого применение БТ в радиоэлектронике приводит к существенному уменьшению габаритных размеров конечной радиотехнической продукции.

Биполярным данный транзистор называется из-за того, что в физических процессах, протекающих во время его функционирования, участвуют оба типа носителей заряда – и электроны, и дырки. Это оказывает влияние на принцип управления выходным сигналом. В биполярных транзисторах выходными параметрами управляет ток, а не электрическое поле, как в полевых (униполярных).

Устройство биполярного транзистора.

Этот полупроводниковый триод состоит из 3 частей – эмиттера, коллектора и базы. Таким образом, ключевыми элементами биполярного транзистора являются два p-n-перехода, а не один, как в полевых. Эмиттер исполняет функцию генератора носителей заряда, которые формируют рабочий ток, стекающий в приёмник – коллектор. База необходима для подачи управляющего напряжения.

Если рассматривать плоскую модель БТ, то радиокомпонент представляет собой две области с p- или n-проводимостью (эмиттер и коллектор), разделённые тонким слоем полупроводника с проводимостью обратного знака (база). Полупроводниковый кристалл со стороны коллектора физически крупнее. Такое соотношение обеспечивает правильную работу биполярного транзистора.

В зависимости от типа проводимости эмиттера, коллектора и базы различают PNP- и NPN-транзисторы. В принципе, они функционируют одинаково с той лишь разницей, что к ним прикладываются напряжения разной полярности. Выбор того или иного вида БТ определяется особенностями конкретных радиотехнических устройств.

Принцип работы биполярного транзистора.

При подключении эмиттера и коллектора к источнику питания создаются почти все условия для протекания тока. Однако свободному перемещению носителей заряда препятствует база, и для устранения этой помехи на неё подаётся напряжение смещения. В базовом слое полупроводника возникают физико-химические процессы электронно-дырочной рекомбинации, в результате которой через базу начинает течь небольшой ток. В результате p-n-переходы открывают путь потоку носителей заряда от эмиттера к коллектору.

Если ток, протекающий через базу, меняется по какому-то закону, то точно так же изменяется и мощный ток между эмиттером и коллектором. Следовательно, мы получаем на выходе биполярного транзистора такой же сигнал, как и на базе, но с более высокой мощностью. В этом и состоит усилительная функция биполярного транзистора.

Режимы работы.

Существует 4 режима, в одном из которых может работать биполярный транзистор. В этот список входят следующие:

  1. отсечка;
  2. активный режим;
  3. насыщение;
  4. барьерный режим.

Существует ещё так называемый инверсный режим, но он на практике не используется и интересен только при теоретических исследованиях поведения полупроводников. Поэтому опишем подробнее только четыре первых.

1. Отсечка.

В том случае, если разность потенциалов между эмиттером и базой ниже некоторого значения (примерно 0.6 Вольт), то база-эмиттерный p-n-переход оказывается закрытым, поскольку ток базы не возникает. В связи с этим коллекторный ток не протекает по той причине, что в базовом слое отсутствуют свободные электроны. Таким образом, транзистор переходит в состояние отсечки и сигнал не усиливает. Этот режим используется в цифровых схемах, когда БТ работает как ключ в положении «разомкнуто».

2. Активный режим.

В этом режиме радиокомпонент усиливает сигнал, то есть исполняет свою основную функцию. На базу подаётся разность потенциалов, которая открывает база-эмиттерный p-n-переход. Как следствие, в транзисторе начинают протекать токи коллектора и базы. Значение коллекторного тока вычисляется как арифметическое произведение величины тока базы и коэффициента усиления.

3. Насыщение.

В этот режим биполярный транзистор входит при увеличении тока базы до некоего предельного значения, при котором p-n-переходы полностью открываются. Значение тока, протекающего через БТ при его насыщении, зависит лишь от питающего напряжения и величины нагрузки в коллекторной цепи. В данном режиме входной сигнал не усиливается, ведь коллекторный ток не воспринимает изменений тока базы. Способность транзистора к переходу в насыщение используется в цифровой технике, когда БТ играет роль ключа в замкнутом положении.

4. Барьерный режим.

Здесь транзистор работает как диод с последовательно включённым резистором. Для этого базу напрямую или через малоомное сопротивление соединяют с коллектором. В данном режиме триоды хорошо показывают себя в высокочастотных устройствах. Кроме того, использование транзистора в барьерном режиме целесообразно на реальном производстве для снижения общего количества комплектующих.

Схемы включения биполярных транзисторов.

Полупроводниковый триод может включаться в электрическую цепь по одной из трёх схем – с общим эмиттером, с общим коллектором и с общей базой. В зависимости от способа подключения различаются электрические параметры транзистора, что определяет выбор схемы в каждом конкретном случае.

Читайте также  Направляющие для циркулярной пилы

При включении биполярного транзистора с общим эмиттером достигается максимальное усиление входного сигнала. Благодаря этому данная схема в усилительных каскадах применяется чаще всего.

Схема с общим коллектором по-другому называется эмиттерным повторителем. Это связано с тем, что разность потенциалов на коллекторе и эмиттере оказываются практически равными. При таком включении наблюдаются большое усиление по току, высокое входное сопротивление и совпадение фаз входного и выходного сигналов. Вследствие этого эмиттерные повторители используются в согласующих и буферных усилителях.

При включении БТ по схеме с общей базой отсутствует усиление по току, но значительным оказывается усиление по напряжению. Особенностью данного способа является малое влияние транзистора на сигналы высокой частоты. Это делает схему с общей базой предпочтительной для использования в устройствах СВЧ.

Основные параметры биполярных транзисторов:

  1. Максимально допустимый постоянный ток коллектора;
  2. Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и сопротивлении в цепи база-эмиттер;
  3. Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и токе базы, равным нулю;
  4. Максимальное напряжение коллектор-база при заданном токе коллектора и токе эмиттера, равным нулю;
  5. Максимально допустимое постоянное напряжение эмиттер-база при токе коллектора, равном нулю;
  6. Максимально допустимая постоянная мощность, рассеивающаяся на коллекторе;
  7. Статический коэффициент передачи тока;
  8. Напряжение насыщения между коллектором и эмиттером;
  9. Обратный ток коллектора. Ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера;
  10. Обратный ток эмиттера. Ток через эмиттерный переход при заданном обратном напряжении эмиттер-база и разомкнутом выводе коллектора;
  11. Граничная частота коэффициента передачи тока;
  12. Коэффициент шума;
  13. Емкость коллекторного перехода;
  14. Максимально допустимая температура перехода.

Характеристики

Так как полупроводниковые триоды (транзисторы) выполнены из полупроводника, то и на их работу влияет окружающая среда. Например, при изменении температуры окружающей среды, транзистор может вносить нелинейные искажения в выходной сигнал. С этим борются при помощи термпостабидизционных схем, которые позволяют стабилизировать работу транзистора на высоких температурах.

Также у транзисторов есть ВАХ (вольт-амперные характеристики), которые в отличие от вакуумной техники, быстро переходят в насыщение.

У всех транзисторов есть следующие параметры:

  • Коэффициент усиления по току;
  • Коэффициент усиления по напряжению;
  • Коэффициент усиления по току;
  • Коэффициент обратной связи;
  • Коэффициент передачи по току;
  • Входное сопротивление;
  • Выходное сопротивление;
  • Время включения;
  • Максимально допустимый ток и др.
  • Обратный ток коллектор-эмиттер;
  • Частота коэффициента передачи тока базы;
  • Обратный ток коллектора;
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером и др.

Режимы работы

В целом, можно выделить несколько режимов работы:

  • Номинальный режим;
  • Инверсный;
  • Насыщения;
  • Отсечка;
  • Барьерный.

Подключение транзистора

Биполярный транзистор – полупроводниковый элемент с двумя pn переходами и тремя выводами, который служит для усиления или переключения сигналов. Они бывают pnp и npn типа. На рис. 1, а и б показаны их условные обозначения.

Рис. 1. Биполярные транзисторы и их диодные эквивалентные схемы:

Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим p— или n— слоем. Электрод, связанный с ним, называется базой Б. Два других электрода называются эмиттером Э и коллектором К. Диодная эквивалентная схема, приведенная рядом с условным обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Обычно переход эмиттер – база смещен в прямом направлении (открыт), а переход база – коллектор – в обратном (заперт). Поэтому источники напряжения должны быть включены, как показано на рис. 2.

Транзисторы npn типа подчиняются следующим правилам (для транзисторов pnp типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):

  1. Коллектор имеет более положительный потенциал, чем эмиттер.
  2. Цепи база-эмиттер и база-коллектор работают как диоды (рис. 1). Обычно переход база-эмиттер открыт, а переход база-коллектор смещен в обратном направлении, т.е. приложенное напряжение препятствует протеканию тока через него. Из этого правила следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как потенциал базы будет превышать потенциал эмиттера более чем на 0,6 – 0,8В (прямое напряжение диода), при этом возникает очень большой ток. Следовательно, в работающем транзисторе напряжение на базе и эмиттере связаны следующим соотношением:
  1. Каждый транзистор характеризуется максимальными значениями IК,IБ,UКЭ. В случае превышения этих параметров необходимо использовать еще один транзистор. Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности РК, температуре, UБЭ и др.
  2. Если правила 1-3 соблюдены, то ток коллектора прямо пропорционален току базы.

Соотношение токов коллектора и эмиттера приблизительно равно

где α = 0,95…0,99 – коэффициент передачи тока эмиттера.

Разность между эмиттерным и коллекторным токами в соответствии с первым законом Кирхгофа (и как видно из рис. 2, а) представляет собой базовый ток

Ток коллектора зависит от тока базы в соответствии с выражением:

где β = α/(1–α) – коэффициент передачи тока базы, β >>1.

Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.

Режимы работы транзистора

Каждый переход биполярного транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают следующие четыре режима работы транзистора.

Усилительный или активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный – обратное. Именно этот режим работы транзистора соответствует максимальному значению коэффициента передачи тока эмиттера. Ток коллектора пропорционален току базы, обеспечиваются минимальные искажения усиливаемого сигнала.

Инверсный режим – к коллекторному переходу подведено прямое напряжение, а к эмиттерному – обратное. Инверсный режим приводит к значительному уменьшению коэффициента передачи тока базы транзистора по сравнению с работой транзистора в активном режиме и поэтому на практике используется только в ключевых схемах.

Режим насыщения – оба перехода (эмиттерный и коллекторный) находятся под прямым напряжением. Выходной ток в этом случае не зависит от входного и определяется только параметрами нагрузки. Из-за малого напряжения между выводами коллектора и эмиттера режим насыщения используется для замыкания цепей передачи сигнала.

Режим отсечки – к обоим переходам подведены обратные напряжения. Так как выходной ток транзистора в режиме отсечки практически равен нулю, этот режим используется для размыкания цепей передачи сигналов.

Основным режимом работы биполярных транзисторов в аналоговых устройствах является активный режим. В цифровых схемах транзистор работает в ключевом режиме, т.е. он находится только в режиме отсечки или насыщения, минуя активный режим.

Схемы включения транзистора

В зависимости от того, какой из выводов транзистора является общим для входа и выхода, различают схему включения транзистора с общим эмиттером (ОЭ), рис. 2, общей базой (ОБ) рис. 3, а, и общим коллектором (ОК) рис. 3, б.

В случае включения транзистора в схему с ОЭ входным током является ток базы, выходным – ток коллектора. Схема с ОЭ является самой распространенной, так как она дает наибольшее усиление по мощности. Усилительные свойства транзистора при включении его по схеме с ОЭ характеризует один из главных его параметров – коэффициент передачи тока базы – β. Коэффициент β для разных транзисторов лежит в диапазоне от десятков до тысяч, а реальный коэффициент усиления по току каскада всегда меньше, так как при включении нагрузки ток коллектора транзистора уменьшается.

Читайте также  Магнитится ли нержавейка

Важная величина, характеризующая транзистор – его входное сопротивление. Для схемы с ОЭ оно составляет от сотен до единиц кОм, что является сравнительной малой величиной. Это существенный недостаток биполярных транзисторов. Выходное сопротивление схемы составляет от единиц до десятков кОм.

К недостаткам схемы с ОЭ относятся также меньший по сравнению со схемой ОБ частотный диапазон и меньшая температурная стабильность.

В схеме с ОБ выходным током является ток коллектора, а входным – ток эмиттера. Хотя эта схема дает значительно меньшее усиление по мощности и имеет еще меньшее входное сопротивление, чем схема с ОЭ, все же ее иногда применяют, так как по своим частотным и температурным свойствам она значительно лучше схемы с ОЭ. Коэффициент усиления по току каскада несколько меньше единицы, по напряжению – такой же, как и в схеме с ОЭ. Входное сопротивление для схемы с ОБ получается в десятки раз меньше, чем в схеме с ОЭ, выходное сопротивление в этой схеме получается до 100 кОм. Следует отметить, что каскад с ОБ вносит при усилении меньшие искажения, чем каскад по схеме с ОЭ.

В схеме с ОК (рис. 3, б) коллектор является общей точкой входа и выхода, поскольку источники питания Е1 и Е2 всегда шунтированы конденсаторами большой емкости и для переменного тока могут считаться короткозамкнутыми. Особенность этой схемы в том, что входное напряжение полностью передается обратно на выход, т.е. сильна отрицательная обратная связь. Именно поэтому такой каскад называют эмиттерным повторителем.

Коэффициент усиления по напряжению схемы с ОК близок к единице, причем всегда меньше ее, коэффициент усиления по току почти такой же, как в схеме с ОЭ, коэффициент усиления по мощности равен нескольким десяткам. Входное сопротивление каскада в схеме с ОК составляет десятки килом, выходное – единицы килом и сотни Ом, что является важным достоинством схемы.

Схема с ОК называется эмиттерным повторителем и используется для согласования источников сигналов и нагрузок.

Транзистор как активный нелинейный четырехполюсник

Основными параметрами, характеризующими транзистор как активный нелинейный четырехполюсник (при любой схеме включения), являются коэффициенты усиления:

Для удобства сравнения параметры трех схем включения транзисторов сведены в табл. 1.

Таблица. 1 Важнейшие параметры основных схем включения транзисторов

Параллельное включение транзисторов

Современные транзисторы позволяют реализовать электронные схемы расчитаные на широкие диапазоны изменений токов и напряжений, но в отдельных случаях для увеличения допустимой мощности рассеивания применяется параллельное включение транзисторов.


Схема параллельного включения транзисторов

Максимально допустимый ток протекающий через такой составной транзистор равен:

При такой схеме включения транзисторов следует учитывать, что вследствие разброса параметров параллельно включённых транзисторов токи между ними распределяются неравномерно. Большая часть тока будет протекать через транзистор, имеющий больший коэффициент усиления. Рассеиваемые транзисторами мощности можно выровнять включением в их эмиттерные цепи дополнительных симметрирующих резисторов с небольшими сопротивлениями. Так как на практике трудно подбирать такие сопротивление для каждого транзистора, в практических схемах в эмиттеры всех транзисторов ставят резисторы одного сопротивления. Сопротивление симметрирующих резисторов R1 и R2 можно определить по формуле

где n – число параллельно соединенных транзисторов

IK — ток проходящий через коллектор.

Такой способ связан с ухудшением усилительных свойств транзисторов, однако его достоинством является возможность получения мощного силового элемента при использовании относительно маломощных транзисторов.

Устройство и принцип работы транзистора

Транзистором называется полупроводниковый прибор, предназначенный для усиления и генерирования электрических колебаний. Транзисторы являются ключами (кнопками) в сетях с постоянным током. Биполярные транзисторы могут управлять электрической цепью до 50 В, полевые транзисторы могут управлять приборами до 100 В (при напряжении на затворе 5 В). В сетях с переменным током использую реле.

Фото. Устройство полевого и биполярного транзистора

При отсутствии напряжения на базе или затворе транзистора, эмиттерный и коллекторный переход находятся в равновесия, токи через них не проходят и равны нулю. Таким образом, подавая на базу биполярного транзистора напряжение в 5 В, мы можем включать электрические цепи до 50 Вольт. Сегодня этот полупроводниковый элемент встречается почти в любом устройстве (в телефоне, компьютере и т.д.).

Транзисторы являются основой для построения микросхем логики, памяти и микропроцессоров компьютеров. Транзистор — это электронный элемент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током высокого напряжения. Использование транзистора — это наиболее простой способ подключения к Ардуино мотора постоянного тока.

3. Схема с ОЭ

Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор RL, а к эмиттеру подключается отрицательный полюс внешнего питания.

Переменный сигнал со входа поступает на электроды эмиттера и базы (Vin), а в коллекторной цепи он становится уже больше по величине (VCE). Основные элементы схемы: транзистор, резистор RL и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С1, препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R1, через который транзистор открывается.

В коллекторной цепи напряжения на выходе транзистора и на резисторе RL вместе равны величине ЭДС: VCC = ICRL + VCE.

Таким образом, небольшим сигналом Vin на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения — в 10-200 раз. Соответственно, мощность также повышается.

Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании каскадов усиления. Выходное сопротивление составляет 2-20 кОм.

Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.

Ещё пара слов по транзисторам, датчикам и контроллерам

Чтобы нормально функционировать в мире датчиков контроллеров, входов, выходов, нужно четко понимать, какой уровень сигнала активный, какой- пассивный, как работает тот или иной выход или вход. Бывает, что активный уровень контроллера – 0В, при этом контакты датчика замкнуты, и он в то же время – не активен.

Кроме того, понятия “аналоговое”, “дискретное”, “цифровое” – весьма условны и перетекают плавно друг в друга.

Поэтому изучайте матчасть, читайте мануалы, и задавайте вопросы в комментариях к статье!