В чём разница

В чём разница?

Ключевое различие между Органическими и Неорганическими полимерами состоит в том, что Органические полимеры содержат атомы углерода в основной цепи, тогда как Неорганические полимеры не содержат атомов углерода в основной цепи. Кроме того, большинство органических полимеров представляют собой простые структуры. Но почти все неорганические полимеры являются сильно разветвленными сложными структурами.

Основой полимера является его основная цепь. Она является непрерывной и её используют для классификации полимера как органического или неорганического. Иногда встречаются гибридные полимеры, содержащие как органические, так и неорганические области в одной и той же основной цепи полимера.

Содержание

  1. Обзор и основные отличия
  2. Что такое Органические полимеры
  3. Что такое Неорганические полимеры
  4. Сходство между Органическими и Неорганическими полимерами
  5. В чем разница между Органическими и Неорганическими полимерами
  6. Заключение

Что такое Органические полимеры?

Органические полимеры представляют собой полимерные материалы, которые содержат атомы углерода в основной цепи. Поэтому в них присутствуют только углерод-углеродные ковалентные связи. Эти полимеры образуются только из молекул органических мономеров.

Некоторые примеры химической структуры органических полимеров

В большинстве случаев эти полимеры являются экологически чистыми, поскольку они являются биоразлагаемыми. Кроме того, существуют две основные формы органических полимеров, такие как природные и синтетические полимеры.

Типичные примеры органических полимеров включают полисахариды, белки и полинуклеотиды (ДНК и РНК). Это природные органические полимеры. Синтетические органические полимеры включают сложные полиэфиры, нейлон и поликарбонат.

Кроме того, органические полимеры, такие как полистирольные смолы, нашли широкое применение в производстве бытовой электроники и техники. Такой полимер, как нейлон-6 используется в текстильной промышленности. Органические полимеры, такие как полиэтилентерефталат, используются при производстве бутылок из ПЭТ. Другие материалы, такие как неопрен, используются в подошвах обуви и гидрокостюмах, поливинилхлорид используется в трубах, тефлон используется в сковородах с антипригарным покрытием.

Что такое Неорганические полимеры?

Неорганические полимеры представляют собой полимерные материалы, которые не имеют атомов углерода в основной цепи. Однако, большинство из этих полимеров являются гибридными полимерами, так как у них есть также некоторые органические области. Эти материалы имеют сильно разветвленную структуру и имеют химические элементы, отличные от углерода, на пример серу и азот.

Кроме того, эти полимеры не являются экологически чистыми, поскольку они не разлагаются микроорганизмами. Некоторыми примерами неорганических полимеров являются полидиметилсилоксан, силиконовый каучук и полифосфазены.

Неорганические полимеры широко используются в нефтехимической промышленности, а такие как силиконовый каучук, используются в конструкции для оконных и дверных уплотнений. В электротехнике неорганические полимеры, такие как силиконовый каучук, используются в оболочках проводов и кабелей, а также в электробезопасных кожухах. Другие неорганические полимеры, такие как полидиметилсилоксан, широко используются в качестве универсального ингредиента во многих продуктах для ухода за кожей и в косметике из-за его способности служить в качестве антивспенивающего агента.

Каковы сходства между Органическими и Неорганическими полимерами?

  • Оба представляют собой полимерные материалы, состоящие из мономеров, которые связаны друг с другом через ковалентные связи.
  • Как органические, так и неорганические полимеры являются макромолекулами, имеющими очень высокие молярные массы.

В чем разница между Органическими и Неорганическими полимерами

Органические полимеры представляют собой полимерные материалы, которые содержат атомы углерода в основной цепи . Как правило, они имеют связи углерод-углерод, углерод-водород, а также ковалентные связи с углеродом, кислородом а также азотом. Большинство Органических полимеров представляют собой простые структуры. Кроме того, они безвредны для окружающей среды, так как они являются биоразлагаемыми.

С другой стороны, Неорганические полимеры представляют собой полимерные материалы, которые не имеют атомов углерода в основной цепи. Это основное различие между Органическими и Неорганическими полимерами. Почти все Неорганические полимеры имеют сильно разветвленную сложную структуру.

Электрическая проводимость. В большинстве водных растворов органические полимеры обычно плохо проводят электричество и тепло. Неорганические полимеры в водных растворах являются хорошими проводниками электричества, так как содержат металлы и обладают высокой способностью к ионизации.

Воспламеняемость. Органические полимеры горючие, а неорганические полимеры негорючие.

Точки кипения и плавления. Между длинными цепями органических полимеров существуют большие межмолекулярные силы по сравнению с неорганическими полимерами. В связи с этим температуры плавления и кипения органических полимеров выше, чем у неорганических полимеров.

Примеры. Примеры неорганических полимеров включают силиконовый каучук (полидиметилсилоксан), полисилоксаны, полифосфазены и полисиланы. С другой стороны, примеры органических полимеров включают полиэтилен низкой плотности, полиэтилен высокой плотности, полипропилен, поливинилхлорид, полистирол, нейлон, тефон и термопластичный полиуретан.

Заключение — Органические против Неорганических полимеров

Природные полимеры подразделяются на два типа, органические полимеры и неорганические полимеры. Разница между Органическими и Неорганическими полимерами состоит в том, что Органические полимеры содержат атомы углерода в основной цепи, тогда как Неорганические полимеры не содержат атомов углерода в основной цепи.

Классификация

Пока еще не сформирован четкий перечень видов, но есть несколько основных групп неорганических полимеров, которые разнятся по своей структуре. Такие материалы бывают:

  • линейными;
  • плоскими;
  • разветвленными;
  • трехмерные и т.д.

Также различают по происхождению:

  • природные;
  • искусственные.

По образованию цепей:

  • гетероцепные;
  • гомоцепные.

В отдельную категорию выделяют полимерные сетки. По своей структуре это макромолекулы пространственного строения. Это позволило обеспечить нужды широкого круга производств.

Основные характеристики

Более распространенными являются гетероцепные полимеры, в которых происходит чередование электроположительных и электроотрицательных атомов, например B и N, P и N, Si и O. Получить гетероцепные неорганические полимеры (НП) можно с помощью реакций поликонденсации. Поликонденсация оксоанионов ускоряется в кислой среде, а поликонденсация гидратированных катионов – в щелочной. Поликонденсация может быть проведена как в растворе, так и в твердых веществах при наличии высокой температуры.

Многие из гетероцепных неорганических полимеров можно получить только в условиях высокотемпературного синтеза, например, непосредственно из простых веществ. Образование карбидов, которые являются полимерными телами, происходит при взаимодействии некоторых оксидов с углеродом, а также при наличии высокой температуры.

Длинные гомоцепные цепи (со степенью полимеризации n>100) образуют карбон и p-элементы VI группы: сера, селен, теллур.

Неорганические полимеры

Классифицируются полимеры по различным признакам: составу, форме макромолекул, полярности, отношению к нагреву и т.д.

1. По составу основной цепи

гомополимеры полимеры, построенные из одинаковых мономеров:

(целлюлоза, состоящая из остатков β-D-глюкозы);

— сополимеры — полимеры, цепочки молекул которых состоят из двух или более различных структурных звеньев:

(нуклеиновая кислота, гиалуроновая кислота, белки);

— блок-сополимеры, состоящие из нескольких полимерных блоков:

Сополимеры получаются в результате реакций сополимеризации.

2. По строению главной цепи

гомоцепные

–СН 2 –СН 2 –СН 2 , –SiН 2 –SiН 2

гетероцепные

–СН 2 –О–СН 2 –О– , –Si (СН 3 ) 2 –О–

Гомоцепные полимеры имеют главную цепь, состоящую из одинаковых атомов. Если она состоит из атомов углерода, то такие полимеры называют карбоцепными (полиэтилен, полистироли др.).

Гетероцепными называют такие полимеры, главная цепь которых состоит из различных атомов. К гетероцепным полимерам относятся простые эфиры, например, полиэтиленгликоль.

3. По регулярности строения цепи

— регулярные (стереорегулярные и стереонерегулярные) (присоединение мономерных звеньев по схеме «голова к хвосту» («головой» называется часть звена без заместителя, а «хвостом», соответственно, часть звена с заместителем);

Читайте также  Уклон трубы канализации

нерегулярные (беспорядочное чередование мономеров различного химического состава).

Однако в большинстве случаев присоединение звеньев идет по типу «голова к хвосту» и при таком строении полимерная цепь довольно регулярна.

4. По форме макромолекулы

линейные;

разветвленные;

пространственные (сшитые)

Линейные и разветвленные цепи полимеров можно превратить в пространственные структуры «сшиванием» с помощью света, радиации или под действием химических реагентов.

5. По химическому составу

По химическому составу полимеры подразделяются на органические, элементоорганические и неорганические.

Органические полимеры составляют наиболее обширную группу соединений. Органические полимеры в главной цепи кроме атомов углерода, могут содержать также и другие элементы — кислород, азот, серу и т.д. Органическими полимерами являются смолы и каучуки.

Элементоорганические соединения в природе не встречаются. Этот класс материалов полностью создан искусственно.

Элементоорганические полимеры содержат в основной цепи неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами (СН3, С6Н5, СН2). Эти радикалы придают материалу, прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. Представителями их являются кремнийорганические соединения.

Неорганические полимеры построены из атомов кремния, алюминия, германия, серы и др. и не содержат органические боковые радикалы. Неорганические полимеры являются основой керамики, стекол, ситаллов, слюдяных, асбестовых, углеграфитовых и других материалов.

6. По отношению к нагреванию

термопластические;

термореактивные

При нагревании термопластических полимеров их свойства постепенно изменяются и при достижении определенной температуры они переходят в вязкотекучее состояние. При охлаждении жидких термопластических полимеров наблюдаются обратные явления. Химическая природа полимера при этом не изменяется, процесс плавления и процесс отвердевания обратим.

К термопластическим полимерам относятся полиэтилен, полистирол, поливинилхлорид.

При нагревании термореактивных полимеров (реактопласты) они приобретают сетчатую структуру. Такие полимеры не восстанавливают свои свойства при нагревании и последующем охлаждении. Примером таких полимеров служат фенолформальдегидные смолы, мочевиноальдегидные, полиэфирные, эпоксидные и карбамидные смолы. Они содержат обычно различные наполнители.

7. По развитию деформации (при комнатных температурах)

пластомеры;

— эластомеры

Полимеры, которые легко деформируются при комнатной температуре, называют эластомерами, трудно деформируемые пластомерами (пластиками).

8. По природе (происхождению)

— природные;

— искусственные;

— синтетические

Полимеры, встречающиеся в природе – органические вещества растительного (хлопок, шелк, натуральный каучук, целлюлоза и др.) и животного (кожа, шерсть и др.) происхождения, а также минеральные вещества (слюда, асбест, естественный графит, природный алмаз, кварц и др.).

Искусственные полимеры получают из природных полимеров путем их химической модификации. Одним из наиболее распространенных природных полимеров, который непрерывно регенерируется в процессе фотосинтеза, является целлюлоза.

Нитроцеллюлоза и ацетатцеллюлоза – продукты химической модификации целлюлозы – искусственные полимеры. Они растворимы в ацетоне, хлороформе и др. растворителях.

Эфиры целлюлозы используют для получения фотопленки и волокон.

Вискозная нить получается растворением природной целлюлозы в сероуглероде со щелочью с последующим ее выделением. Вискозная нить и целлюлоза природная имеют различную кристаллическую структуру, пластмасса целлулоид получается обработкой нитроцеллюлозы камфарой в присутствии спирта.

Синтетические полимеры получают из простых веществ путем химического синтеза. Основным преимуществом синтетических полимеров перед природными являются неограниченные запасы исходного сырья и широкие возможности синтеза полимеров с заранее заданными свойствами. Исходным сырьем для получения синтетических полимеров являются продукты химической переработки нефти, природного газа и каменного угля.

9. По полярности

полярные;

неполярные

Полярные содержат полярные группы -OH, -COOH, -CN, -Cl, -CONH2 — ПВС (поливиниловый спирт), ПВХ (поливинилхлорид).

Неполярные не содержат полярных групп атомов — ПЭ (полиэтилен), ПП (полипропилен) и др.

Неорганические полимеры

На большей части наших страниц мы говорили о полимерах, чья основная цепочка состояла в основном, если не полностью, из атомов углерода. Мы называем такие полимеры органическими. Но сейчас мы хотим отойти от этого принципа и поговорить о некоторых полимерах, у которых совсем нет атомов углерода в основной цепочке. Такие полимеры называются, как будто бы вы и сами не догадались, неорганическими полимерами. Вот список неорганических полимеров, который поможет вам ориентироваться на этой странице:

    СиликоныПолисиланыПолимеры германия и олова (Polygermanes and polystannanes)Полифосфазены

Силиконы

На самом деле их следует называть полисилоксанами. Связь между атомами кремния и кислорода очень прочная, но очень гибкая. Поэтому силиконы могут выдерживать высокие температуры, не разлагаясь при этом, но у них очень низкие температуры стеклования. Вам, наверное, прежде где-нибудь уже приходилось встречать резину или замазку, сделанную из силиконов.

Полисиланы

Правильно. Было потрачено немало времени для того, чтобы это произошло, но атомы кремния все-таки были выстроены в длинные полимерные цепочки. Уже где-то в 20-е или 30-е годы двадцатого века химики начали догадываться, что органические полимеры сделаны из длинных углеродных цепочек, но серьезные исследования полисиланов не были проведены вплоть до конца семидесятых годов.

Ранее, в 1949 году, в то самое время, когда писатель Курт Воннегут работал в отделе компании Дженерал Электрик по связям с общественностью, К. А. Буркхард (C.A. Burkhard) работал в отделе исследования и развития той же фирмы. Он изобрел полисилан под названием полидиметилсилан, но это вещество ни на что не годилось. Оно выглядело вот так:

Оно образовывало кристаллы, которые были столь прочными, что ничто не могло растворить их. Буркхард пытался нагреть их, но они не плавились при температурах ниже 250 o C, При более высокой температуре они разлагались, так и не расплавивишись. Это делало полидиметилсилан довольно бесполезным. Получено это вещество было при реакции металлического натрия с дихлордиметилсиланом вот так:

Это важно, поскольку в семидесятых годах двадцатого века некоторые ученые начали понимать, как делать маленькие молекулы из атомов кремния. Так, сами того не ожидая, они сделали нечто очень похожее на то, что ранее сделал Буркхард. Они заставили металлический натрий взаимодействовать с дихлордиметилсиланом, но они также добавили к этой смеси некоторое количество дихлорметилфенилсилана. И угадайте, что произошло? Я дам вам подсказку: они не получили нужные им структуры. То, что у них вышло, было вот таким сополимером:

Возможно, более понятно станет, если нарисовать этот сополимер вот таким образом:

Видите ли, эти фенильные группы начинают мешаться, когда полимер пытается кристаллизоваться, поэтому такому веществу в меньшей степени присущи кристаллические свойства, чем полидиметилсилану. Это значит, что оно растворимо и его можно обрабатывать, преобразовывать и изучать.

Ну, и на что же эти вещества годятся? Полисиланы интересны, поскольку они могут проводить электрический ток. Разумеется, не так хорошо, как медь, но гораздо лучше, чем вы могли бы ожидать от полимера, и это достойно исследования. Они также весьма термостойки, их можно нагревать почти до 300 o C. Но если вы нагреете их до гораздо более высоких температур, то вы можете получить из них карбид кремния, который является полезным абразивным материалом.

Полимеры германия и олова

Полимеры олова уникальны, интересны, замечательны, просто необыкновенны, поскольку они являются единственными известными полимерами, основная цепь которых сделана целиком из атомов металлов. Как и полисиланы, полимеры германия и олова (полигерманы и полистанилены) изучаются на предмет их использования в качестве проводников электричества.

Читайте также  Трубогиб прокатный

Полифосфазены

Такая основная цепочка очень гибкая, как и основная цепочка полисилоксанов, поэтому полифосфазены являются хорошими эластомерами. Они также являются очень хорошими электрическими изоляторами. Полифосфазены делаются в две стадии:

Сначала мы берем пятихлористый фосфор и действуем на него хлоридом аммония для получения хлорированного полимера. Затем мы обрабатываем его спиртовой солью натрия, что дает нам эфирзамещенный полифосфазен.

Полимеры. Виды и применение. Как утроены и свойства. Особенности

Полимеры – сложные вещества, состоящие из длинных повторяющихся цепочек молекул. В зависимости от структуры могут иметь различные физические качества, к примеру, легко тянуться и обладать эластичностью, или наоборот отличаться твердостью. Под полимерами обычно подразумевают различные виды пластика, но на самом деле к ним можно отнести и белки, из которых состоит ДНК, РНК, полисахариды.

Как устроены полимеры

Полимер представляет собой молекулу, звенья которой повторяются много раз. В состав такой молекулы обычно входит всего 4 элемента. Это азот, кислород, водород и углерод. Данные элементы могут сочетаться в различных комбинациях. Из них можно составить сотни тысяч разных полимерных веществ с неожиданными свойствами. К примеру, ПЭТ и кевлар являются полимерами. При этом из ПЭТ делают пластиковые бутылки. Они легкие, прозрачные, гибкие. Кевлар же состоит из тех самых 4-х элементов, но с другой атомной решеткой. Он в 5 раз прочнее стали. Благодаря этому его используют для производства бронежилетов, касок.

Обычно под полимерами подразумевается пластик. Он является синтетической разновидностью полимера. На самом деле к ним можно отнести и естественные материалы, к примеру, древесину, резину, мел.

С понятием полимер тесно связаны термины полимеризация и макромолекула. Они были придуманы и введены в обиход Германом Штаудингером, который считается основателем учения о полимерах. Все современные вещества этого типа были созданы на основе его разработок. Под полимеризацией подразумевается непосредственно сам процесс создания искусственных полимеров, при котором маленькие молекулы мономеры соединяются в длинные цепочки ковалентными связями.

Макромолекула является большой молекулой полимера, состоящей из мономеров. Их количество может доходить до сотен тысяч. То есть, каждая молекула любого полимера — это макромолекула.

Свойства полимеров

Все они обладают особенными механическими свойствами, за счет чего выгодно выделяются среди остальных материалов. Благодаря их качествам они используются в разнообразных областях, начиная от медицины и заканчивая машиностроением. Одним из самых важных свойств выступает способность быстрого изменения физико-механических качеств при нанесении небольшого количества реагента.

Для разных полимеров характерны:
  • Эластичность.
  • Низкая хрупкость.
  • Способность молекул ориентироваться по направлению механического поля.
  • Высокая вязкость при растворении.

Многие полимеры при низком уровне прикладываемых усилий способны к растяжению и обратной деформации. Ярким тому примером является резина. Другие вещества, не являющиеся синтетическими или природными полимерами, данных качеств не имеют.

Кристаллический и стеклообразный полимер отличаются низким уровнем хрупкости. За счет этого при деформации или ударной нагрузке они сохраняют целостность, даже если не обладают эластичностью. Наиболее ярко эти качества выражены у пластмасс и органического стекла. Под воздействием направленного механического поля макромолекулы могут выстраиваться в определенную сторону. Это позволяет сформировать из них волокна. При растворении полимера даже при небольшой концентрации в растворе тот получается вязким.

Классификация полимеров
Разделение полимеров на виды возможно по нескольким параметрам. В первую очередь это можно сделать по химическому составу. По этому критерию они бывают:
  • Органические.
  • Неорганические.
  • Элементоорганические.

Органические состоят из органических звеньев главной цепи. За счет чего материал и получил такое название. У неорганического полимера нет органических звеньев вообще. Элементоорганический имеет углеводородные группы и неорганические звенья.

Также их разделяют на виды в зависимости от происхождения. Они бывают:
  • Природные.
  • Искусственные.
  • Синтетические.

Природные полимеры имеют естественное происхождение. Примером такого полимера может быть обыкновенная древесина, известь, кожа, шерсть и т.д. Искусственные являются тоже практически природными, просто имеющими некоторые усовершенствования, которые удалось добиться силами человека. За счет модификации они меняют свои первоначальные качества под необходимые свойства. Так, путем модификации целлюлозы был получен целлулоид. Синтетический полимер полностью является продуктом человеческого вмешательства. Самым первым представителем данной группы стала бакелитовая смола. Очень скоро количество подобных веществ выросло в сотни раз.

Также выполняется разделение полимеров на виды по другим критериям. К примеру, по строению макромолекул. Они могут быть:
  • Линейными.
  • Развернутыми.
  • Лестничными.
  • Трехмерными сшитыми.
Группы полимеров
Хотя каждый полимер имеет свои уникальные качества, но все же, многие вещества имеют очень похожие свойства. В связи с этим их можно объединять в группы:
  • Термопласты.
  • Реактопласты.
  • Эластомеры.
  • Огнеупорные.

Термопласты включают в себя полимеры, которые в нормальных температурных условиях имеют твердое состояние. При нагревании они становятся очень эластичными или вязкотекучими. Переходы состояний являются обратимыми. За счет этого их можно повторять многократно. Термопласты отлично подходят для вторичной переработки, так как могут переплавляться в новые изделия. Примерами термопластов являются полиэтилен, АБС, ПВХ.

Реактопласты являются веществами совершенно другого порядка. Они представляют собой пластмассы, которые уже нельзя расплавить или растворить. За счет этого вещества данной группы очень износоустойчивы. Обычно эти материалы существенно тверже, чем термопластичные. Примером реактопластов является эпоксидная смола, полиуретаны, полиамиды.

Эластомеры обладают высокой эластичностью и вязкостью. Каждый материал из этой группы может растягиваться существенно больше, чем его изначальная длина. При этом эластомеры возвращаются до исходного положения после снятия нагрузки. Нужно отметить, что многие вещества похожие на эластомеры относятся к термопластикам. Примерами эластомеров являлись каучук, бутилкаучук, цис-полиизобутиленовый, бутадиен-стирольный низкотемпературной полимеризации.

Большинство синтетических полимеров не могут использоваться в сочетании с огнем. Они быстро воспламеняются. Специально для решения этой проблемы была создана группа материалов с противоположными свойствами. Полученный в результате полимер не боится воздействия огня, так как совершенно не горит. Он обычно выглядит как твердый легкий пластик. Материал не теряет форму при нагреве. За это качество он получил достаточно широкую сферу использования. Стойкость к горению и плавке делает его сложным материалом для вторичной переработки.

Применение полимеров
Полимеры благодаря легкости, коррозийной стойкости и прочности получили крайне широкое распространение. Их используют даже чаще чем металлы, и любые другие материалы. Особенно хорошо они применяются в следующих направлениях:
  • Автомобилестроении.
  • Авиастроении.
  • Судостроении.
  • Медицине.
  • Пищевой промышленности.

Полимер является неотъемлемым материалом для производства автомобилей. Из него делают резину для колес, пластик для внутренней отделки, краски и лаки. Также из него изготавливаются прочные легкие кузова автомобилей, теплоизоляцию и звукоизоляцию. Резина на шинах является полимером, также из него сделаны шланги, уплотнительные прокладки. Многие детали могут быть изготовлены исключительно из полимера, поэтому это крайне важное вещество для любого направления применения.

Полимер получил огромное распространение в авиации. Он очень легкий и обладает достаточной прочностью для применения в ответственных механизмах. В связи с этим он стал использоваться не только в авиастроении, но и производстве космических кораблей, ракет. Для этих целей применяют самые передовые материалы. В основном для производства колес, стекла, герметиков, клея.

Читайте также  Обратная полярность акб

Физико-химические и механические качества позволяют использовать полимер в медицине. В частности, из них делают специализированное оборудование, различные предметы для ухода за больными, инструменты. Также полимеры используются в хирургии. Из них вытачивают протезы. На основе полимеров создают кровезаменители и плазмозаменители. Каждый полимер для медицинского применения отличается низким уровнем разрушения при трении, но высокой химической устойчивостью.

Полимеры также применяются для решения нужд пищевой промышленности. Для этой сферы они используются в огромных количествах. Так, любая упаковка продуктов — это полимер. Это фантики, обертки, пакеты всех типов, бутылки. Применение полимеров в пищевой отрасли вызвано необходимостью соблюдения санитарного режима. Каждое изделие в такой упаковке является изолированным от прямого внешнего воздействия. За счет дешевизны такие упаковки можно использовать одноразово. В дальнейшем в зависимости от типа полимера они могут переплавляться на новый товар или просто выбрасывать. Ведутся разработки по создании искусственной кожи из полимера.

Также полимеры получили широкое распространение в судостроении. Из них делают краски, пластиковые панели, уплотнители. Также из полимера могут изготавливаться небольшие рыбацкие лодки. Они очень легкие, потому используются повсеместно. В первую очередь это надувные лодки.

Виды полимеров

По своему происхождению полимеры можно разделить на три типа:

  • природные. Природные или натуральные полимеры можно встретить в природе в естественных условиях. К этой группе относятся, например, янтарь, шелк, каучук, крахмал.

  • синтетические. Синтетические полимеры получают в лабораторных условиях, синтезирует их человек. К таким полимерам относятся ПВХ, полиэтилен, полипропилен, полиуретан. эти вещества не имеют ни какого отношения к природе.
  • искусственные. Искусственные полимеры отличаются от синтетических тем, что они синтезированы хоть и в лабораторных условиях, но на основе природных полимеров. К искусственным полимерам относится целлулоид, ацетатцеллюлоза, нитроцеллюлоза.

С точки зрения химической природы полимеры делятся на органические, неорганические и элементоорганические. Большая часть всех известных полимеров являются органическими. К ним относятся все синтетические полимеры. Основу веществ неорганической природы составляют такие элементы, как S, O, P, H и другие. Такие полимеры не бывают эластичными и не образуют макроцепей. Сюда относятся полисиланы, поликремниевые кислоты, полигерманы. К полимерам с элемнтоорганической природой относится смесь как органических, так и неорганических полимеров. Главная цепь – всегда неорганическая, боковые – органические. Примерами полимеров могут служить полисилоксаны, поликарбоксилаты, полиорганоциклофосфазены.

Все полимеры могут находится в разных агрегатных состояниях. Они могут быть жидкостями (смазки, лаки, клеи, краски), эластичными материалами (резина, силикон, поролон), а также твердыми пластмассами (полиэтилен, полипропилен).

Неорганические полимеры

Неорганические полимеры, полимеры с неорганической (не содержащей атомов углерода) основной цепью макромолекулы. Боковые (обрамляющие) группы — в большинстве случаев также неорганические; но полимеры с органическими боковыми группами довольно часто кроме этого относят к Н. п. (строгого деления по этому показателю нет).

Подобно органическим полимерам Н. п. подразделяют по пространственной структуре на линейные, разветвленные, лестничные и сетчатые (двух- и трёхмерные), по составу основной цепи — на гомоцепные типа [—M—] n и гетероцепные типа [—M—M’—] n либо [— М— M’— М—] n (где М, M’, М — разные атомы). К примеру, полимерная сера [—S—] n — гомоцепной линейный Н. п. без боковых групп.

Многие неорганические вещества в жёстком состоянии являются единую макромолекулу, но, для отнесения их к Н. п. нужно наличие некоей анизотропии пространственного строения (и, следовательно, особенностей). Этим кристаллы Н. п. отличаются от всецело изотропных кристаллов простых неорганических веществ (к примеру, NaCI, ZnS).

Большая часть химических элементов не может к образованию устойчивых гомоцепных Н. п., и только приблизительно 15 (S, Р, Se, Te, Si и др.) образуют не весьма долгие (олигомерные) цепи, существенно уступающие по устойчивости гомоцепным олигомерам со связями С—С. Исходя из этого самый обычны гетероцепные Н. п., в которых чередуются электроположительные и электроотрицательные атомы, к примеру В и N, Р и N, Si и О, образующие между собой и с атомами боковых групп полярные (частично ионные) химические связи.

Полярные связи обусловливают повышенную реакционную свойство Н. п., в первую очередь склонность к гидролизу. Исходя из этого многие Н. п. малоустойчивы на воздухе; помимо этого, кое-какие из них легко деполимеризуются с образованием циклических структур. На эти и др. химические особенности Н. п. возможно частично воздействовать, направленно меняя боковое обрамление, от которого в основном зависит темперамент межмолекулярного сотрудничества, определяющего эластичные и др. механические особенности полимера.

Так, линейный эластомер полифосфонитрилхлорид [—CI2PN—] n в следствии гидролиза по связи Р—Сl (и последующей поликонденсации) преобразовывается в трёхмерную структуру, не владеющую эластическими особенностями. Устойчивость к гидролизу этого эластомера возможно повысить при замене атомов Cl на кое-какие органические радикалы.

Многие гетероцепные Н. п. отличаются высокой термостойкостью, существенно превышающей термостойкость органических и элементоорганических полимеров (к примеру, полимерный оксонитрид фосфора [PON] n не изменяется при нагревании до 600 °С). Но высокая термостойкость Н. п. редко сочетается с полезными механическими и электрическими особенностями. По данной причине число Н. п., отыскавших использование на практике, относительно мало.

Но Н. п. — серьёзный источник получения новых термостойких материалов.

Читать также:

  • «Ножницы цен»
  • Обделка
  • Нормирование труда

Полимеры

Связанные статьи:

Полимеры (от греч. polymeres — складывающийся из многих частей, многообразный), химические соединения с высокой молекулярной массой (от нескольких тысяч…

Растворы полимеров, термодинамически устойчивые однородные молекулярно-дисперсные смеси низкомолекулярных жидкостей и полимеров. В разбавленных Р. п….

Задание Напишите уравнения получения полиакрилонитрила и фторопласта.
Решение n (CH2=CH-CN) = -(-CH2-CH(CN)-)-
Задание Полистирол хорошо растворяется в неполярных органических растворителях: бензоле, толуоле, ксилоле, тетрахлориде углерода. Вычислите массовую долю (%) полистирола в растворе, полученном растворением 25 г полистирола в бензоле массой 85г. (22,73%).
Решение Записываем формулу для нахождения массовой доли:

Найдем массу раствора бензола:

mр-ра(C6H6) = m(C6H6)/(/100%)

Найдем массу раствора полистирола в бензоле:

mр-ра(полистирол в бензоле)= 25 + 373,95 = 398,95 (г)

Найдем массовую долю полистирола в бензоле:

(полистирола) = 25/398,95 × 100% = 6,27%