MOSFET транзисторы

MOSFET транзисторы

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n — переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые).

Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел — полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2).

Еще одно, довольно распространенное название – МДП (металл – диэлектрик — полупроводник).

Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.

Что же это такое MOSFET ?

MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Внешний вид одного из широко распространённых мосфетов — IRFZ44N.

Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET’а, J-FET имеет немного иную структуру.

Принцип работы полевого транзистора.

Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.

Упрощённая модель полевого транзистора с изолированным затвором.

Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.


Упрощённая модель полевого транзистора с изолированным затвором

Основу МДП-транзистора составляет:

Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.

Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому «+»), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.

Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.

Теперь в двух словах опишем, как это всё работает.

Если между затвором и истоком приложить напряжение плюсом ( +) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.

В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.

Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.

Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.

Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В мосфете обеднённого типа в области канала уже присутствуют электроны, поэтому он пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.

О различии MOSFET’ов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.

Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.

Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.

Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET’ы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.

Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому — напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.

Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы. Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.

В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть здесь.

Кратко о MOSFET

MOSFET — это управляемый переключатель с тремя контактами (затвор, сток и исток). Сигнал затвора (управления) подается между затвором и истоком, а контактами переключения являются сток и исток. Сам затвор выполнен из металла и отделен от истока оксидом металла в качестве диэлектрика. Это позволяет снизить энергопотребление и делает этот транзистор отличным выбором для использования в качестве электронного переключателя или усилителя в схеме с общим истоком.

Для правильной работы МОП-транзисторы должны поддерживать положительный температурный коэффициент. Потери во включенном состоянии малы и теоретически сопротивление транзистора в этом состоянии не ограничено — может быть близко к нулю. Кроме того, поскольку МОП-транзисторы могут работать на высоких частотах, они могут работать в устройствах с быстрым переключением и с низкими потерями на переключение.

Существует много различных типов МОП-транзисторов, но наиболее сопоставимыми с IGBT являются мощные MOSFET. Они специально разработаны для работы со значительными уровнями мощности и используются чаще всего только во включенном или выключенном состояниях, что делает их наиболее используемым ключом для низковольтных схем. По сравнению с IGBT, мощные полевые МОП-транзисторы имеют преимущества — более высокую скорость коммутации и более высокую эффективность при работе при низких напряжениях. Более того, такая схема может выдерживать высокое напряжение блокировки и поддерживать высокий ток. Это связано с тем что большинство мощных МОП-структур являются вертикальными (а не плоскими). Номинальное напряжение является прямой функцией легирования и толщины эпитаксиального слоя с примесью N-типа, а ток зависит от ширины канала (чем шире канал, тем выше ток).

Проверка полевого MOSFET транзистора цифровым мультиметром

Для примера возьмем полевой МОП-транзистор с каналом n-типа IRF 640. Условно-графическое обозначение такого транзистора и его цоколевку вы видите на следующем рисунке.

Перед началом проверки транзистора замкните все его выводы между собой, что бы снять возможный заряд с транзистора.

Проверка встроенного диода

Для начал следует подготовить мультимер и перевести его в режим проверки диодов. Для этого переключатель режимов/пределов установите в положение с изображением диода.

В этом режиме мультиметр при подключении диода в прямом направлении (плюс прибора на анод, минус прибора на катод) показывает падение напряжения на p-n переходе диода. При включении диода в обратном направлении мультиметр показывает «1».

Читайте также  Как подключить выключатель двойной

Итак, подключаем щупы мультиметра, как было сказано выше, в прямом включении диода. Таким образом, красный шум (+) подключаем на исток, а черный (-) на сток.

Мультиметр должен показать падение напряжение на переходе порядка 0,5-0,7.

Меняем полярность подключения встроенного диода, при этом мультиметр, при исправности диода покажет «1».

Проверка работы полевого МОП транзистора

Проверяемый нами МОП-транзистор имеет канал n-типа, поэтому, что бы канал стал электропроводен необходимо на затвор транзистора относительно истока либо стока подать положительный потенциал. При этом электроны из подложки переместятся в канал, а дырки будут вытолкнуты из канала. В результате канал между истоком и стоком станет электропроводен и через транзистор потечет ток.

Для открытия транзистора будет достаточно напряжения на щупах мультиметра в режиме прозвонки диодов.

Поэтому черный (отрицательный) щуп мультиметра подключаем на исток (или сток), а красным касаемся затвора.

Если транзистор исправен, то канал исток-сток станет электропроводным, то есть транзистор откроется.

Теперь если прозвонить канал исток-сток, то мультиметр покажет какое-то значение падение напряжения на канале, в виду того, что через транзистор потечет ток.

Таким образом черный щуп транзистора ставим на исток, а красный на сток и мультиметр покажет падение напряжение на канале.

Если поменять полярность щупов, то показания мультиметра будут примерно одинаковыми.

Что бы закрыть транзистор достаточно относительно истока на затвор подать отрицательный потенциал.

Следовательно, подключаем положительный (красный) щуп мультиметра на исток, а черным касаемся затвор.

При этом исправный транзистор закроется. И если после этого прозвонить канал исток-сток, то мультиметр покажет лишь падение напряжения на встроенном диоде.

Если транзистор управляется напряжением с мультиметра (то есть открывается и закрывается), значит можно сделать вывод, что транзистор исправен.

Проверка полевого МОП – транзистора с каналом p-типа осуществляется подобным образом. За тем исключением, что во всех пунктах проверки полярность подключения щупов меняется на противоположную.

Более подробно и просто всю методику проверки полевого транзистора я изложил в следующем видеоуроке:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Что важно учесть при монтаже MOSFET-транзистора

При работе с MOSFET транзисторами нужно учесть, что они могут быть повреждены статическим электричеством на ваших руках или одежде. Перед монтажом на печатную плату необходимо соединить выводы транзистора между собой тонкой проволокой. Для пайки лучше используйте паяльную станцию, а не обычный электрический паяльник. Вместо отсоса для удаления припоя используйте медную ленту для удаления припоя. Это уменьшит вероятность пробоя затвора статическим электричеством. Или используйте антистатический браслет.

Базовая структура MOSFET транзистора

Конструкция MOSFET (что это, рассказано в статье подробно) очень отличается от полевых. Оба типа транзисторов используют электрическое поле, создаваемое напряжением на затворе. Чтобы изменить поток носителей заряда, электронов для п-канала или отверстия для р-канала, через полупроводящий канал сток-исток. Электрод затвора помещен на вершине очень тонким изолирующим слоем, и есть пара небольших областей п-типа только под сток и исток электродов.

При помощи изолированного устройства затвора для МОП-транзистора никаких ограничений не применяется. Поэтому можно соединять с затвором полевого МОП-транзистора источник сигнала в любой полярности (положительный или отрицательной). Стоит отметить, что чаще встречаются импортные транзисторы, нежели их отечественные аналоги.

Это делает MOSFET устройства особенно ценными в качестве электронных переключателей или логических приборов, потому что без воздействия извне они, как правило, не проводят ток. И причина этому высокое входное сопротивление затвора. Следовательно, очень маленький или несущественный контроль необходим для МОП-транзисторов. Ведь они представляют собой устройства, управляемые извне напряжением.

Проверка и определение цоколевки MOSFET

Как показывает опыт, новички, сталкивающиеся с проверкой элементной базы подручными средствами, без каких-либо проблем справляются с проверкой диодов и биполярных транзисторов, но затрудняются при необходимости проверить столь распространенные сейчас MOSFET-транзисторы (разновидность полевых транзисторов). Я надеюсь, что данный материал поможет освоить этот нехитрый способ проверки полевых транзисторов.

Очень кратко о полевых транзисторах

На данный момент понаделано очень много всяких полевых транзисторов. На рисунке показаны графические обозначения некоторых разновидностей полевых транзисторов.

G-затвор, S-исток, D-сток. Сравнивая полевой транзистор с биполярным, можно сказать, что затвор соответствует базе, исток – эмиттеру, сток полевого транзистора – коллектору биполярного транзистора.

Наиболее распространены n-канальные MOSFET – они используются в цепях питания материнских млат, видеокарт и т.п. У MOSFET имеется встроенный диод:

MOSFET n-канальный (слева) и p-канальный (справа).

Транзисторы лучше рисовать с диодом — чтобы потом было проще в схеме ориентироваться. Этот диод является паразитным и от него не удается избавиться на этапе изготовления транзистора. Вообще при изготовлении MOSFET возникает паразитный биполярный транзистор, а диод – один из его переходов. Правда нужно признать, что по схемотехнике этот диод все равно частенько приходится ставить, поэтому производители транзисторов этот диод шунтируют диодом с лучшими показателями как по быстродействию, так и по падению напряжения. В низковольтные MOSFET обычно встраивают диоды Шоттки. А вообще в идеале этого диода не должно было бы быть.

Типовое включение полевого (MOSFET) транзистора:

MOSFET типовое включение

Проверка полевых транзисторов (MOSFET)

И вот, иногда наступает момент, когда необходимо полевой транзистор проверить, прозвонить или определить его цоколевку. Сразу оговоримся, что проверить таким образом можно «logic-level» полевые транзисторы, которые можно встретить в цепях питания на материнских платах и видеокартах. «logic-level» в данном случае означает, что речь идет о приборах, которые управляются, т.е. способны полностью открывать переход D-S, при приложении к затвору относительно небольшого, до 5 вольт, напряжения. На самом деле очень многие MOSFET способны открыться, пусть даже и не полностью, напряжением на затворе до 5В.

В качестве примера возьмем N-канальный MOSFET IRF1010N для его проверки (прозвонки). Известно, что у него такая цоколевка: 1 – затвор (G), 2 – сток (D), 3 – исток (S). Выводы считаются как показано на рисунке ниже.

Распиновка корпуса TO-220

1. Мультиметр выставляем в режим проверки диодов, этот режим очень часто совмещен с прозвонкой. У цифрового мультиметра красный щуп «+», а черный «–», проверить это можно другим мультиметром.
На любом уважающем себя мультиметре есть такая штуковина

Прозвонка диодов, да и вообще полупроводниковых переходов на мультиметре.

2. Щуп «+» на вывод 3, щуп «–» на вывод 2. Получаем на дисплее мультиметра значения 400…700 – это падение напряжения на внутреннем диоде.

3. Щуп «+» на вывод 2, щуп «–» на вывод 3. Получаем на дисплее мультиметра бесконечность. У мультиметров обычно обозначается как 1 в самом старшем разряде. У мультиметров подороже, с индикацией не 1999 а 4000 будет показано значение примерно 2,800 (2,8 вольта).

4. Теперь удерживая щуп «–» на выводе 3 коснуться щупом «+» вывода 1, потом вывода 2. Видим, что теперь щупы стоят так же, как и в п.3, но теперь мультиметр показывает 0…800мВ – у MOSFET открыт канал D-S. Если продолжать удерживать щупы достаточно долго, то станет заметно, что падение напряжения D-S увеличивается, что означает, что канал постепенно закрывается.

5. Удерживая щуп «+» на выводе 2, щупом «–» коснуться вывода 1, затем вернуть его на вывод 3. Как видим, канал опять закрылся и мультиметр показывает бесконечность.

Поясним, что же происходит. С прозвонкой внутреннего диода все понятно. Непонятно почему канал остается либо закрытым, либо открытым? На самом деле все просто. Дело в том, что у мощных MOSFET емкость между затвором и истоком достаточно большая, например у взятого мной транзистора IRF1010N измеренная емкость S-G составляла 3700пФ (3,7нФ). При этом сопротивление S-G составляет сотни ГОм (гигаом) и более. Не забыли – полевые транзисторы управляются электрическим полем, а не током в отличие от биболярных. Поэтому в п.4 касаясь “+” затвора (G) мы его заряжаем относительно истока (S) как обычный конденсатор и управляющее напряжение на затворе может держаться еще достаточно долго.

Если хвататься за выводы транзистора руками, особенно жирными и влажными, емкость транзистора будет разряжаться значительно быстрее, т.к. сопротивление будет определяться не диэлектриком у затвора транзистора, а поверхностным сопротивлением. Не смытый флюс также сильно снижает сопротивление. Поэтому рекомендую помыть транзистор, перед проверкой, например, в спирто-бензиновой смеси.

P.S. Спирто-бензиновая смесь при испарении может генерировать статическое электричество, которое, как известно, негативно действует на полевые транзисторы.

Небольшие пояснения о мультиметрах

1. У цифровых мультиметров режим проверки диодов проводится измерением падения напряжения на щупах, при этом по щупам прибор пропускает стабильный ток 1мА. Именно поэтому в данном режиме прибор показывает не сопротивление, а падение напряжения. Для германиевых диодов оно равно 0,3…0,4В, для кремниевых 0,6…0,8В. Но что бы там не измерялось напряжение на щупах прибора редко превышает 3В – это ограничение накладывается схемотехникой мультиметров.
2. В п.4 при измерении падения напряжения открытого канала величина, отображаемая мультиметром может сильно меняться от различных факторов: напряжения на щупах, температуры, тока стабилизации, характеристик самого полевого транзистора.

Читайте также  Закалка стали 40х

Тренировка =)

Теперь можно потренироваться в определении цоколевки мощного транзистора. Перед нами транзистор IRF5210 и его цоколевка мне неизвестна.

1. Начну с поиска диода. Попробую все варианты подключения к мультиметру. После каждого измерения корочу ножки транзистора фольгой чтобы обеспечить разряд емкостей транзистора. Возможные варианты показаны в таблице:

Т.е. диод находится между выводами 2 и 3, соответственно затвор (G) находится на выводе 1.

2. Осталось определить, где находятся сток (D) и исток (S) и полярность (n-канал или p-канал) полевого транзистора.

2.1. Если это n-канальный транзистор, то сток (D) – 3 вывод, исток (S) – 2 вывод. Проверяем. Прикладываем «–» щуп мультиметра к выводу 2, «+» к выводу 3 – канал закрыт, так и должно быть – мы же его еще не пытались открыть. Теперь не отнимая щупа «–» от вывода 2 щупом «+» касаемся вывода 1, затем «+» опять прикладываем к выводу 3. Канал не открылся – значит, наше предположение о том, что IRF5210 n-канальный транзистор оказалось неверным.

2.2. Если это p-канальный транзистор, то сток (D) – 2 вывод, исток (S) – 3. Проверяем. Прикладываем «+» щуп мультиметра к выводу 3, «–» к выводу 2 – канал закрыт, так и должно быть – мы же его еще не пытались открыть. Теперь не отнимая щупа «+» от вывода 3 щупом «–» касаемся вывода 1, затем «–» опять прикладываем к выводу 2. Канал открылся – значит, что IRF5210 p-канальный транзистор, вывод 1 – затвор, вывод 2 – сток, вывод 3 – исток.

На самом деле все не так сложно. Буквально пол часа тренировки – и вы сможете без каких-либо проблем проверять MOSFETы и определять их цоколевку!

Устройство и основные характеристики МОП-транзисторов

Практически все типы MOSFET имеют три вывода:

· Исток – источник носителей зарядов. Является аналогом эмиттера в биполярном приборе.

· Сток. Служит для приема носителей заряда от истока. Аналог коллектора биполярного транзистора.

· Затвор. Выполняет функции управляющего электрода. Аналог в биполярном устройстве – база.

Особая категория – транзисторы с несколькими затворами. Они применяются в цифровой технике для организации логических элементов или в качестве ячеек памяти EEPROM .

Основные характеристики униполярных транзисторов, учитываемые при выборе нужного прибора:

· в открытом состоянии – внутреннее сопротивление и наибольшее значение допустимого постоянного тока;

· в закрытом состоянии – максимально допустимое напряжение прямого типа.

Транзистор полевой

В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от «электрическое поле». Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. «Полевики» по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода: исток, сток, затвор.

исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания.

сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания.

затвор (gate) — управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs.

Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис.1 изображены типы полевых транзисторов и их обозначения на схемах.

Рис.1. Типы полевых транзисторов и их схематическое обозначение.

«Полевик» с изолированным затвором и индуцированным каналом

Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: «полевик», «мосфет», «ключ».

Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.

Обратный диод

Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях.

Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой.

В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору.

Рис.2. Паразитные элементы в составе полевого транзистора.

Основные преимущества MOSFET

  • меньшее потребление, высокий КПД. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
  • простая схема управления.Схемы управления напряжением более просты, чем схемы управления током.
  • высокая скорость переключения.Отсутствуют неосновные носители. Следовательно не тратится время на их рассасывание. Частота работы сотни и тысячи килогерц
  • повышеная теплоустойчивость. С ростом температуры растет сопротивление канала, следовательно понижается ток, а это приводит к понижению температуры. Происходит саморегуляция.

Основные характеристики MOSFET

  • Vds(max) – максимальное напряжение сток-исток в закрытом состоянии транзистора
  • Rds(on) – активное сопротивление канала в открытом состоянии транзистора. Этот параметр указывают для определенных значений Vgs 10В или 4.5В или 2.5 В при которых сопротивление становится минимальным.
  • Vgs(th) – пороговое напряжение при котором транзистор начнет открываться.
  • Ids – максимальный постоянный ток через транзистор.
  • Ids(Imp) – импульсный (кратковременный) ток, который выдерживает транзистор.
  • Ciss, Crss, Coss – емкость затвор-исток (input), затвор-сток (reverse), сток-исток(output).
  • Qg – заряд который необходимо передать затвору для переключения.
  • Vgs(max) – максимальное допустимое напряжение затвор-исток.
  • t(on), t(of) – время переключения транзистора.
  • характеристики обратного диода сток-исток ( максимальный ток, падение напряжения, время восстановление)

Что еще нужно знать про полевой транзистор?

P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте.

МОП транзистор — потенциальный прибор и управляется напряжением (потенциалом), затвор отделен слоем диэлектрика , по сути это конденсатор и через него не протекает постоянный ток, поэтому он не потребляет ток управления в статике, но во время переключения требуется приличный ток для заряда-разряда емкости.

МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.

Vgs – управляющее напряжение, Vg-Vs. Если измерять относительно общего минуса, то: для n канального Vgs>0, для p канального Vgs

Схема включения MOSFET

Традиционная, классическая схема включения «мосфет», работающего в режиме ключа (открыт-закрыт), приведена на рис 3. Это схема, с общим истоком. Она наиболее распространена, легка в реализации и имеет самый простой способ управления транзистором.

Читайте также  Площадь сечения сферы

Нагрузку включают в цепь стока. Встроенный диод, оказывается включенным в обратном направлении и ток через него не протекает.

Для n-канального: исток на землю, сток через нагрузку к плюсу. Тогда для его открытия, на затвор нужно подать положительное напряжение, подтянуть к плюсу питания. При работе от ШИМ (широтно импульсный модулятор), открывать его будет положительный импульс.

Для p-канального: исток на плюс питания, сток через нагрузку на землю. Тогда для его открытия, на затвор нужно подать отрицательное напряжение, подтянуть к минусу питания (земле). При управлении от ШИМ, открывающим будет – отрицательный импульс (отсутствие импульса).

Рис. 3. Классическая схема включения MOSFET в ключевом режиме.

МОП транзистор, в открытом состоянии, будет пропускать ток как от истока к стоку, так и от стока к истоку. Также и нагрузку можно включать как в цепь стока, так и истока. Но при «нестандартном» включении, усложняется управление транзистором, так для n-канального может потребоваться, напряжение выше питания, а для p-канального – отрицательное напряжение ниже земли (двухполярное питание).

МОП транзис торы, используемые в цифровой электронике, делятся на два типа.

  1. Мощные силовые – используются в импульсных преобразователях напряжения и в цепях питания.
  2. Транзисторы логического уровня – используются как ключи, коммутируют различные сигналы и управляются микросхемами.

Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора.

Драйвера

Для того чтобы быстро перезарядить Gate необходимо приложить, в зависимости от полевика, различное усилие. В интернете есть формулы для расчета токов, протекающих через драйвер. Я же хочу показать какие есть схемы управления полевиками. Конкретно нас интересует ключевой режим работы MOSFET-а.

Напрямую от контроллера

Не самый лучший вариант. Исключение составляют контроллеры со встроенным драйвером. RG резистор ограничивает ток через контроллер и уменьшает пульсации. У полевиков тоже есть своя индуктивность, она небольшая, но при быстром нарастании/спаде возникают колебания как в LC контуре. В моих краях найти контроллер со встроенным драйвером либо сложно либо дорого, поэтому приходится колхозить на универсальном ШИМ контроллере, под названием TL494.

Еще одна заметка по поводу резистора RG, когда требуется управлять большими токами и приходится ставить по 2-3+ транзистора, то данный резистор необходимо ставить перед каждым полевиком:

Особо крутые контроллеры, как на материнках, работающие на частотах 0.5-2МГц не требуют данного резистора и имеют отдельный выход для каждого полевика. Каждый полевик там представляет собой отдельную фазу с отдельным дросселем. Такие частоты выбраны специально для уменьшения габаритов всей схемы. Чем выше частота – тем меньше индуктивность нужна. В общих чертах.

Производители контроллеров полевиков рекомендуют сопротивление RG 4.7 Ом. Даже видел гдето видео ролик с презентацией сравнения потерь при различных резисторах. На практике же RG может доходить до 200 Ом, т.к. драйвера разные – токи которые они могут выдержать тоже разные. И частоты тоже разные. Короче глупо говорить что ставьте везде 4.7 Ома и будет счастье. Поэтому данный резистор должен подбираться индивидуально под способности драйвера и емкость Gate полевика (в даташитах этот параметр обозначается как Ciss – Input Capacitance).

Двухтактный биполярный драйвер

Одна из самых эффективных схем управления:

В идеале управляющие транзисторы надо распологать как можно ближе к MOSFET-у, для уменьшения пути протекания тока. Важно добавить шунтирующий конденсатор между VGate и землей (в схеме не указан).

Хорошо если N-канальный полевик Source-ом подключен к общей шине – земле – что и контроллер. Такое бывает в Step-Up конвертерах, однако ими мир не ограничивается. В Step-Down конвертерах полевик подключается Drain-ом напрямую к +, а Source идет дальше на дроссель. Если вы (не дай бог как я, по своей неопытности, когда в первой пришлось собрать понижающий преобразователь) попробуете заставить работать такую схему:

То обнаружите что полевик уже дымиться и припой капает коту на хвост расплавился. Как я сказал в начале статьи, N канальный полевик открывается полностью если на Gate подать + относительно Source. Но в данном случае получается когда мы подаем + на Gate, он начинает открываться и Source поднимается к + тоже! В итоге полевик не открыт и не закрыт. Висит посередине и дико греется. Но тут существует простое решение, Bootstrap-драйвер:

Схема немного усложнилась. Как видите силовым полевиком (справа) управляет по прежднему двухтактный биполярный драйвер. Однако он заведен относительно Source полевика. Левый полевой транзистор – маломощный, используется для сдвига уровня. Сигнал подается инвертированный. Резистор Pull-Down (подтягивающий) лучше поставить, в случае чего чтобы схема не “летала в воздухе”. Вот как оно работает: изначально конденсатор CBOOT заряжается через диод DBOOT управляющим напряжением, т.к. транзистор закрыт, на выводе Source земля (после дросселя L идет нагрузка которая как бы “заземляет” на время выключения полевика вывод Source). Полевик сдвига уровня наоборот (слева), открыт, чтобы силовой полевик был закрыт. Собственно в этом и заключается инверсия. Когда полевик сдвига уровня закрывается через резистор RLEVEL подается положительное напряжение на драйвер, а далее драйвер усиливает сигнал и подает + на Gate силового транзистора. Он начинает открываться и… и открывается полностью! Так как конденсатор CBOOT заряжен и привязан к Source силового полевика, то когда Source выравнялся по напряжению с напряжением притания, то CBOOT поднялся еще выше и оттуда, сверху, рулит через драйвер полевиком! Получается напряжение в момент открытия силового полевика относительно земли таково: UCBOOT+UPOWER. А диод не позволяет этому напряжению уходить обратно. Поэтому важно рассчитать какая разница напряжений у Вас получиться и использовать диод с запасом на данное напряжение. Когда триумф нашего CBOOT подходит к концу левый полевик открывается, на драйвере напряжение падает и одновременно с этим Source силового полевика также возвращается на “землю”. Я бы рекомендовал добавить небольшой резистор после Drain управляющего полевика, чтобы, когда драйвер открыт и “земля” драйвера выше реальной земли, не убить маломощный управляющий полевик. На своей практике я использовал 12 Ом резистор. Такая схема, с КПД 85% управляла понижающим конвертером на 300 ватт…. только недолго, нагрузка на выходе в виде резисторов плавилась на глазах Еще большего КПД можно достичь применяя синхронный выпрямитель, это когда вместо диода снизу ставится тоже полевой транзистор и открывается, когда верхний уже закрыт. Т.к. схема синхронизации двух полевиков заметно усложняется, то советую использовать спецальные синхронные драйвера. Там уже все задержки между открытием и закрытием есть, чтобы исключить протекание сквозных токов.

Схема ускоренного выключения на PNP

Самая простая и, возможно, самая популярная схема на одном PNP транзисторе:

В данном случае подразумевается что контроллер достаточно мощный, чтобы быстро зарядить полевик, но например, как у TL494, выход состоит всего лишь из одного npn транзистора. Обьеденив два имеющихся выхода TL494 и подцепив коллектором на + питания, эмитторы идут на вход этого полудрайвера. Главное эммитеры подтянуть на землю резистором. В случае напрямую выход TL494 подключить к полевику, то он будет очень долго закрываться, если подтягивающий резистор на килоом и больше. Если сдеать его на 100-200 ом, то тогда возрастает нагрузка на выходной каскад TL-ки, что тоже не хорошо:

В таком случае и применяется закрывающий драйвер:

В таком случае подтягивающий резистор делается на несколько килоом а RG рассчитывается также как раньше. При подаче положительного импульса, он проходит напрямую через диод D_ON и заряжает Gate полевика. Когда выходной каскад на TL-ке закрывается, то через подтягивающий резистор PULL_DOWN открывается Q_OFF и мгновенно разряжает через себя заряд Gate, что и приводит к моментальному закрытию полевика!

Почему N-канальный полевик лучше P-канального?

Возможно вы уже заметили что на всех схемах фигурирует N-канальный MOSFET. Этому есть несколько причин:

  • У N-канала при одинаковой серии меньшее сопротивление открытого канала.
  • N-канальные дешевле. 20A N-ch 1$ условно, то 20A P-ch 1.5$
  • В парных сборках N-ch и P-ch (в SO8 корпусе например) P-ch обладает как бОльшим сопротивлением так и меньшим максимальным током.
  • Сложно достать мощные P-ch полевики в какойнить деревне
  • Драйвер на рассыпухе для High-side N-ch может выйти дешевле чем разность стоимости P-ch – N-ch полевиков.

Так что если уже запаслись N-канальными полевиками, то вперед собирать к ним драйвера! Это не сложнее чем купить/найти P-ch.