Как проверить транзистор

Как проверить транзистор?

Занимаясь ремонтом и конструированием электроники, частенько приходится проверять транзистор на исправность.

Рассмотрим методику проверки биполярных транзисторов обычным цифровым мультиметром, который есть практически у каждого начинающего радиолюбителя.

Несмотря на то, что методика проверки биполярного транзистора достаточно проста, начинающие радиолюбители порой могут столкнуться с некоторыми трудностями.

Об особенностях тестирования биполярных транзисторов будет рассказано чуть позднее, а пока рассмотрим самую простую технологию проверки обычным цифровым мультиметром.

Для начала нужно понять, что биполярный транзистор можно условно представить в виде двух диодов, так как он состоит из двух p-n переходов. А диод, как известно, это ничто иное, как обычный p-n переход.

Вот условная схема биполярного транзистора, которая поможет понять принцип проверки. На рисунке p-n переходы транзистора изображены в виде полупроводниковых диодов.

Устройство биполярного транзистора p-n-p структуры с помощью диодов изображается следующим образом.

Как известно, биполярные транзисторы бывают двух типов проводимости: n-p-n и p-n-p. Этот факт нужно учитывать при проверке. Поэтому покажем условный эквивалент транзистора структуры n-p-n составленный из диодов. Этот рисунок нам понадобиться при последующей проверке.

Транзистор со структурой n-p-n в виде двух диодов.

Суть метода сводиться к проверке целостности этих самых p-n переходов, которые условно изображены на рисунке в виде диодов. А, как известно, диод пропускает ток только в одном направлении. Если подключить плюс ( + ) к выводу анода диода, а минус (-) к катоду, то p-n переход откроется, и диод начнёт пропускать ток. Если проделать всё наоборот, подключить плюс ( + ) к катоду диода, а минус (-) к аноду, то p-n переход будет закрыт и диод не будет пропускать ток.

Если вдруг при проверке выясниться, что p-n переход пропускает ток в обоих направлениях, то значит он «пробит». Если же p-n переход не пропускает ток ни в одном из направлений, то значит переход в «обрыве». Естественно, что при пробое или обрыве хотя бы одного из p-n переходов транзистор работать не будет.

Обращаем внимание, что условная схема из диодов необходима лишь для более наглядного представления о методике проверки транзистора. В реальности транзистор имеет более изощрённое устройство.

Функционал практически любого мультиметра поддерживает проверку диода. На панели мультиметра режим проверки диода изображается в виде условного изображения, который выглядит вот так.

Думаю, уже понятно, что проверять транзистор мы будем как раз с помощью этой функции.

Небольшое пояснение. У цифрового мультиметра есть несколько гнёзд для подключения измерительных щупов. Три, а то и больше. При проверке транзистора необходимо минусовой щуп (чёрный) подключить к гнезду COM (от англ. слова common – «общий»), а плюсовой щуп ( красный ) в гнездо с обозначением буквы омега Ω, буквы V и, возможно, других букв. Всё зависит от функционала прибора.

Почему я так подробно рассказываю о том, как подключать измерительные щупы к мультиметру? Да потому, что щупы можно элементарно перепутать и подключить чёрный щуп, который условно считается «минусовым» к гнезду, к которому нужно подключить красный, «плюсовой» щуп. В итоге это вызовет неразбериху, и, как следствие, ошибки. Будьте внимательней!

Теперь, когда сухая теория изложена, перейдём к практике.

Какой мультиметр будем использовать?

В качестве мультиметра использовался многофункциональный мультитестер Victor VC9805+, хотя для измерений подойдёт любой цифровой тестер, вроде всем знакомых DT-83x или MAS-83x. Такие мультиметры можно купить не только на радиорынках, магазинах радиодеталей, но и в магазинах автозапчастей. Подходящий мультиметр можно купить в интернете, например, на Алиэкспресс.

Вначале проведём проверку кремниевого биполярного транзистора отечественного производства КТ503. Он имеет структуру n-p-n. Вот его цоколёвка.

Для тех, кто не знает, что означает это непонятное слово цоколёвка, поясняю. Цоколёвка — это расположение функциональных выводов на корпусе радиоэлемента. Для транзистора функциональными выводами соответственно будут коллектор (К или англ.- С), эмиттер (Э или англ.- Е), база (Б или англ.- В).

Сначала подключаем красный ( + ) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).

Далее не отсоединяя красного щупа от вывода базы, подключаем чёрный («минусовой») щуп к выводу эмиттера транзистора.

Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.

Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом, обратном включении. В этом режиме p-n переход ток не проводит, и на дисплее не должно отображаться ничего, кроме «1». Если на дисплее единица «1», то это означает, что сопротивление перехода велико, и он не пропускает ток.

Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…

…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.

Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1», что, как уже говорилось, указывает на то, что p-n переход не пропускает ток. Так мы проверили переходы Б-К и Б-Э в обратном включении.

Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.

Пробой P-N перхода транзистора.

В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.

Обрыв P-N перехода транзистора.

При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1». При таком дефекте p-n переход как бы превращается в изолятор.

Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность подключения измерительных щупов к выводам транзистора. Вспомним рисунок условного изображения транзистора p-n-p в виде двух диодов. Если забыли, то гляньте ещё раз и вы увидите, что катоды диодов соединены вместе.

В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107 структуры p-n-p. Вот его цоколёвка.

В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.

Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.

Читайте также  Ножки для мангала

То же самое проделываем и для перехода Б-Э.

Как видим, он также исправен. На дисплее – 724 мВ.

Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.

Переход Б-К при обратном включении…

Переход Б-Э при обратном включении.

В обоих случаях на дисплее прибора – единичка «1». Транзистор исправен.

Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:

Определение цоколёвки транзистора и его структуры;

Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;

Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;

При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов. К таковым можно отнести составные транзисторы (транзисторы Дарлингтона), «цифровые» транзисторы, строчные транзисторы (так называемые «строчники») и т.д.

Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики. Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом). О том, как найти даташит на конкретный электронный компонент или микросхему, я рассказывал здесь.

С чего начать?

Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.

Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.

Рисунок 2. Фрагмент спецификации на 2SD2499

Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.

Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

Инструкция проверки тестером

Тестеры различаются по видам моделей:

  1. Существуют приборы, в которых конструкцией предусмотрены устройства, позволяющие измерить коэффициент усиления микротранзисторов малой мощности.
  2. Обычные тестеры позволяют осуществить проверку в режиме омметра.
  3. Цифровой тестер измеряет транзистор в режиме проверки диодов.

В любом из случаев существует стандартная инструкция:

  1. Прежде, чем начать проверку, необходимо снять заряд с затвора. Это делается так – буквально на несколько секунд заряд необходимо замкнуть с истоком.
  2. В случае, когда проверяется маломощный полевой транзистор, то перед тем, как взять его в руки, обязательно нужно снять статический заряд со своих рук. Это можно сделать, взявшись рукой за что-нибудь металлическое, имеющее заземление.
  3. При проверке стандартным тестером, необходимо в первую очередь определить сопротивление между стоком и истоком. В обоих направлениях оно не должно иметь особого различия. Величина сопротивления при исправном транзисторе будет небольшой.
  4. Следующий шаг – измерение сопротивления перехода, сначала прямое, затем обратное. Для этого необходимо подключить щупы тестера к затвору и стоку, а затем к затвору и истоку. Если сопротивление в обоих направлениях имеет разную величину, триодное устройство исправно.

Как проверить транзистор мультиметром не выпаивая

Как проверить биполярный транзистор мультиметром

Существует множество приборов для проверки любых типов транзисторов. Ими можно проверить не только исправность транзистора, но и подобрать необходимый коэффициент усиления h21э.

Однако для ремонта бытовой техники и электроники вполне достаточно одного мультиметра. Чтобы понять сам процесс проверки транзистора, нелишне будет знать, что такое транзистор и как он работает. Транзистор можно представить как два встречно включенных диода имеющих p-n переходы. Для p-n-p транзисторов эквивалентная схема выглядит как два диода включенных катодами друг к другу, а для n-p-n структуры диоды включены анодами друг к другу.

Эквивалентные схемы транзисторов

Так можно представить себе упрощенный эквивалентный вариант транзистора. В двух словах о принципе работы транзистора. При подаче переменного сигнала на базу транзистора (общий конец соединения диодов) меняется сопротивление переходов коллектор – база и эмиттер – база. Соответственно и общее сопротивление переходов меняется по закону входного сигнала. Постоянное напряжение источника питания, приложенное к коллектору и эмиттеру, будет также меняться по закону входного сигнала.

Но напряжение источника питания, приложенное к переходу эмиттер – коллектор транзистора значительно больше сигнала поступающего на базу. Выходной сигнал снимается с выводов эмиттера и коллектора. Так работает транзистор в режиме усиления. В ключевом режиме на базу подаётся минимальный сигнал, при котором транзистор закрыт и максимальный сигнал, который полностью открывает транзистор.

Как проверить p-n-p транзистор мультиметром

Биполярные транзисторы могут быть с прямой проводимости p-n-p и обратной проводимостью n-p-n. На схеме проводимость p-n-p переходов обозначается стрелкой по направлению к базе, а n-p-n переходы отражаются стрелкой указывающей направление от базы. Для проверки транзистора на мультиметре выбирают предел измерения сопротивления 2000 Ом или “прозвонку”.

Находим обратное сопротивление переходов

Минус мультиметра прикладывают к базе транзистора, а плюс поочередно к выводам коллектора и эмиттера. Нормальное сопротивление перехода будет в пределах 400 – 1200 Ом. Чтобы проверить переходы коллектор – база и эмиттер – база на обратное сопротивление, плюс мультиметра прикладывают к базе, а минусы к эмиттеру и коллектору по очереди.

Обратное сопротивление коллектора и эмиттера должно быть большим, и мультиметр будет показывать “1”. Чтобы проверить транзистор с обратной полярностью n-p-n, к базе прикладывают плюс мультиметра, а в остальном методика такая же, как и при проверке полярности p-n-p. Этим же методом можно проверить работоспособность транзисторов, не выпаивая с платы.

Иногда переходы транзистора в схеме могут быть шунтированы небольшим сопротивлением. Тогда лучше отпаять базу или весь транзистор, так как показания мультиметра при проверке на целостность элемента будут неверными. Если переходы транзистора в обоих направлениях показывают ноль или близкое к нему, то это указывает на пробой переходов, а показания “1” на мультиметре говорят об обрыве переходов.

Как найти цоколевку транзистора мультиметром

Расположение выводов (цоколевка) транзистора можно найти по справочнику или по типу транзистора в интернете. Определить расположение выводов можно и мультиметром. Для этого плюс мультиметра прикладывают к правому выводу транзистора, а минус к среднему и левому контакту.

Как найти эмиттер и коллектор

Допустим, что сопротивление в обоих измерениях составило бесконечность. Получается, что мы нашли обратное сопротивление двух переходов n-p-n. Таким образом, мы попали на базу. Для нахождения коллектора и эмиттера минусом становятся на базу, а плюсом касаемся двух оставшихся выводов по очереди.

На дисплее отобразились значения сопротивлений переходов 816 Ом и 807 Ом. Вывод с сопротивлением 807 Ом будет коллектором, потому что переход база – коллектор имеет меньше значение сопротивления, чем переход база – эмиттер. Существуют так же транзисторы средней и большой мощности, у них коллектор соединен с корпусом или с металлической пластиной, предназначенной для рассеивания тепла.

Читайте также  Как сделать шуруповерт от сети

Как проверить мощный биполярный транзистор и его цоколевку.

Разбить биполярный транзистор на диоды

Рисунок, представленный среди текста, демонстрирует схему замещения транзистора двумя диодами. Позволит рассматривать усилительный элемент, представив суммой двух независимых более простых. Не обладающих усилением, проявляющих нелинейные свойства (неодинаковость прямого/обратного включения).

Мощные транзисторы силовых цепей бессилен открыть скудными силами мультиметр. Поэтому для тестирования устройств применяются специальные схемы. Нельзя проверить биполярный транзистор мультиметром напрямую.

Технологии проверки

Биполярный

Структура биполярного транзистора (БТ) включает в себя 2 p-n или 2 n-p перехода. Выводы этих переходов называются эмиттером и коллектором. Вывод срединного слоя называется базой. Упрощенно БТ можно представить как два включенных встречно диода, как изображено на рисунке 2.

Рисунок 2 – NPN модель и ее диодный «аналог»

Проверить биполярный транзистор мультиметром не сложно, в чем Вы сейчас и убедитесь. Как известно основным свойством p-n перехода является его односторонняя проводимость. При подключении положительного (красный) щупа к аноду, а черного к катоду на дисплее мультиметра будет отображена величина прямого напряжения на переходе в милливольтах. Величина напряжения зависит от типа полупроводника: для германиевых диодов это напряжение будет порядка 200–300 мВ, а для кремниевых от 600 до 800 мВ. В обратном направлении диод ток не пропускает, поэтому если поменять щупы местами, то на дисплее будет отображена 1, свидетельствующая о бесконечно большом сопротивлении.

Если же диод «пробит», то скорей всего раздастся звуковой сигнал, причем в обоих направлениях. В случае если диод «в обрыве», то на индикаторе, так и будет отображаться единица.

Таким образом, суть проверки исправности транзистора заключается в «прозвонке» p-n переходов база-коллектор, база-эмиттер и эмиттер-коллектор в прямом и обратном включении:

  • База-коллектор: Красный щуп подключается к базе, черный к коллектору. Соединение должно работать как диод и проводить ток только в одном направлении.
  • База-эмиттер: Красный щуп остается подключенным к базе, черный подключается к эмиттеру. Аналогично предыдущему пункту соединение должно проводить ток только при прямом включении.
  • Эмиттер-коллектор: У исправного перехода сопротивление данного участка стремится к бесконечности, о чем будет говорить единица на индикаторе.

При проверке работоспособности pnp типа «диодный» аналог будет выглядеть также, но диоды будут подключены наоборот. В этом случае черный щуп подключается к базе. Переход эмиттер-коллектор проверяется аналогично.

На видео ниже наглядно показывается проверка биполярного транзистора мультиметром:

Полевой

Полевые транзисторы (ПТ) или «полевики» используются в блоках питания, мониторах, аудио и видеотехнике. Поэтому с необходимостью проверки более часто сталкиваются мастера по ремонту аппаратуры. Самостоятельно проверить такой элемент в домашних условиях можно также с помощью обычного мультиметра.

На рисунке 3 представлена структурная схема ПТ. Выводы Gate (затвор), Drain (сток), Source (исток) могут располагаться по-разному. Очень часто производители маркируют их буквами. Если маркировка отсутствует, то необходимо свериться со справочными данными, предварительно узнав наименование модели.

Рисунок 3 – Структурная схема ПТ

Стоит иметь в виду, что при ремонте аппаратуры, в которой стоят ПТ, часто возникает задача проверки работоспособности и целостности без выпаивания элемента из платы. Чаще всего выходят из строя мощные полевые транзисторы, устанавливаемые в импульсные блоки питания. Также следует помнить, что «полевики» крайне чувствительны к статическим разрядам. Поэтому перед тем, как проверить полевой транзистор не выпаивая, необходимо надеть антистатический браслет и соблюдать технику безопасности.

Рисунок 4 – Антистатический браслет

Проверить ПТ мультиметром можно по аналогии с прозвонкой переходов биполярного транзистора. У исправного «полевика» между выводами бесконечно большое сопротивление вне зависимости от приложенного тестового напряжения. Однако, имеются некоторые исключения: если приложить положительный щуп тестера к затвору, а отрицательный – к истоку, то зарядится затворная емкость, и переход откроется. При замере сопротивления между стоком и истоком мультиметр может показать некоторое значение сопротивления. Неопытные мастера часто принимают подобное явление как признак неисправности. Однако, это не всегда соответствует реальности. Необходимо перед проверкой канала сток-исток замкнуть накоротко все выводы ПТ, чтобы разрядились емкости переходов. После этого их сопротивления снова станут большими, и можно повторно проверить работает транзистор или нет. Если подобная процедура не помогает, то элемент считается нерабочим.

«Полевики», стоящие в мощных импульсных блоках питания часто имеют внутренний диод на переходе сток-исток. Поэтому этот канал при проверке ведет себя как обычный полупроводниковый диод. Во избежание ложной ошибки необходимо перед тем, как проверить транзистор мультиметром, удостовериться в наличии внутреннего диода. Следует поменять местами щупы тестера. В этом случае на экране должна отобразиться единица, что свидетельствует о бесконечном сопротивлении. Если этого не происходит, то, скорее всего, ПТ «пробит».

Технология проверки полевого транзистора показана на видео:

Составной

Типовой составной транзистор или схема Дарлингтона изображена на рисунке 5. Эти 2 элемента расположены в одном корпусе. Внутри также находится нагрузочный резистор. У такой модели аналогичные выводы, что и у биполярного. Нетрудно догадаться, что проверить составной транзистор мультиметром можно точно также, как и БТ. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв в цепи.

Рисунок 5 – Схема Дарлингтона

Если после прочтения статьи Вы все же не до конца поняли, как проверить транзистор мультиметром, видео урок ниже позволит наглядно увидеть технологию проверки:

Таким образом, задача проверки данного элемента схемы сводится к последовательному «прозвону» p-n переходов, и если они исправны, то устройство можно считать рабочим. Надеемся, что теперь Вы знаете, как проверить транзистор мультиметром в домашних условиях!

Советуем прочитать:

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Биполярный

Как проверить биполярный транзистор мультиметром? В первую очередь нужно выяснить, к какому из двух подтипов — npn или pnp он относится. Для этого вспомним, что же вообще такое биполярный транзистор.

Это полупроводниковый элемент, в котором реализован так называемый npn или pnp переход. N-p-n — это переход «электрон — дырка — электрон», p-n-p, соответственно, наоборот, «дырка — электрон — дырка».

Конструктивно он состоит из трех частей — эмиттера, коллектора и базы. Фактически биполярник — это два сопряженных обыкновенных диода, у которых база является общей точкой соединения.

Читайте также  Как работает выключатель

На схеме pnp транзистор отличается от своего npn-собрата направлением стрелки в круге — стрелки эмиттерного перехода. У схемы p-n-p она направлена к базе, у n-p-n — наоборот.

Эту разницу нужно знать для проверки биполярного транзистора. Pnp-схема открывается приложением к базе отрицательного напряжения, npn — положительного. Но перед этим необходимо выяснить, какой из контактов проверяемого транзистора является базой, какой эмиттером, а какой коллектором.

Обратите внимание, что определить описанным ниже способом, какой из контактов — база, а какие — эмиттер и коллектор, можно только у исправного элемента. Сам по себе факт прохождения транзистором этой проверки говорит о том, что он, скорее всего, исправен.

Инструкция здесь может быть следующая:

  1. красный (плюсовой) щуп подключается к первому попавшемуся выводу, например левому, черным (минусовым) поочередно касаются центрального и правого. Фиксируют значение «1» на центральном, и 816 Ом, например, на правом;
  2. красный щуп мультиметра закорачивают с центральным контактом, черный — поочередно с боковыми. Прибор выдает «1» на левом и какое-либо значение, допустим, 807 — на правом;
  3. при контакте красного щупа мультиметра с правым выводом, а черного — с левым и центральным получаем в обоих случаях «1». Это означает, что база определена — это и есть правый контакт транзистора. А сам транзистор — pnp-типа.

В принципе, этого достаточно, чтобы сказать, что транзистор исправен. Теперь, чтобы проверить его структуру и конкретное расположение эмиттера и коллектора, закорачиваем черный (минусовой) щуп мультиметра с базой, а красный — по очереди с левым и центральным контактом.

Тот контакт, что дает меньшую величину сопротивления, будет коллекторным (в нашем случае 807 Ом). Тот, что большую — 816 Ом — является эмиттерным.

Проверка транзистора npn типа происходит так же, только к базе прикладывается плюсовой контакт.

Это способ проверки p-n переходов между базой и коллектором и базой и эмиттером. Показания мультиметра могут быть разными, в зависимости от типа транзистора, но всегда будут лежать в пределах 500-1200 Ом.

Для завершения испытания коснитесь щупами эмиттера и коллектора. Исправный элемент при этом будет выдавать бесконечно большое сопротивление вне зависимости от своего типа, как бы вы ни меняли полярность. Если значение на экране отличается от «1» — один из переходов пробит, деталь непригодна к работе.

Признаки неисправности транзистора

Как уже отмечалось выше если замеры прямого сопротивления (черный минус на базе, а плюс поочередно на коллекторе и эмиттере) и обратного (красный плюс на базе, а черный минус поочередно на коллекторе и эмиттере) не соответствуют указанным выше показателям, то транзистор вышел из строя.

Другой признак неисправности, это когда сопротивление p-n переходов хотя бы в одном замере равно или приближено к нулю.

Это указывает на то, что диод пробит, а сам транзистор вышел из строя. Используя данные выше рекомендации, вы легко сможете проверить транзистор мультиметром на исправность.