TL431 datasheet, TL431 схема включения

TL431 datasheet, TL431 схема включения

Про светодиоды уже написал достаточно много, теперь читатели не знают как их правильно и питать, чтобы они не сгорели раньше положенного срока. Теперь продолжаю ускоренно пополнять раздел блоков питания, стабилизаторов напряжения и преобразователей тока.

В десятку популярных электронных компонентов входит регулируемый стабилизатор TL431 и его брат ШИМ контроллер TL494. В источниках питания он выступает в качестве «программируемого источника опорного напряжения, схема включения очень простая. В импульсных блоках питания на ТЛ431 бывает реализована обратная связь и опорное напряжение.

Ознакомитесь с характеристикам и даташитами других ИМС применяемых для питания LM317, TL431, LM358, LM494.

  • 1. Технические характеристики
  • 2. Схемы включения TL431
  • 3. Цоколёвка TL431
  • 4. Datasheet на русском
  • 5. Графики электрических характеристик

Устройство электронного элемента

Микросхема обладает простой конструкцией, состоящей из следующих элементов: корпуса, операционного усилителя (ОУ), выходного tl431 транзистора, а также источника опорного напряжения. Особенностью этой микросхемы является то, что она выполняет функции стабилитрона.

Источник опорного напряжения на 2.5 вольта, обладающий высокой стабильностью, подключается к инверсному входу ОУ (-), эмиттеру транзистора и землёй с помощью двух общих точек в цепь опорного напорного также включён кремниевый диод. Он предназначен для предотвращения создания обратного тока и защищает от переполюсовки. Прямой вход ® предназначен для приёма сигнала с других плат, а также питания усилителя. Он подключается через диод к коллектору транзистора также через общую точку. Выход ОУ подключён к базе транзистора.

Следует помнить, что транзистор, используемый в микросхемах данной серии, способен выдержать нагрузки до 0.1 А и 36 В.

Технические характеристики TL431

Рассмотрим максимально допустимые рабочие характеристики микросхемы. Если при его эксплуатации они будут превышены, то устройство неминуемо выйдет из строя. Продолжительная эксплуатация с параметрами, близкими к предельным значениям, также не допускается. Рассмотрим их подробней:

  • катодное выходное напряжение (VKA), по отношению к выводу анода до 37 В;
  • возможные значения токов: для непрерывного катодного на выходе (IKA) от –100 мА до 150 мА; для обратного на входе от -50 мА до 10 мА;
  • типовой импеданс до 0,22 Ом;
  • рассеиваемая мощность (для разных типов упаковки) PD: 0.8 Вт (SOT-89); 0,78 Вт (ТО-92); 0.75 Вт (SO-8); 0,33 Вт (SOT-23); 0,5 Вт (SOT-25);
  • температура кристалла (TJ): рабочая: 0…+70 О С; -40 … +125 О С (для некоторых автомобильных версий); максимальная (TJmax) до +150 О С;
  • тепловое сопротивление корпуса RθJC: 97 О С/Вт (D); 156 О С/Вт (LP); 28 О С/Вт (KTP); 127 О С/Вт (P); 52 О С/Вт (PK); 149 О С/Вт (PW);
  • температура хранения: -65… +150 О С.

Максимальную рассеиваемую мощность можно рассчитать по стандартной формуле PD= (TJmax-TA)/ RθJC. В ней ТА – это температура окружающей среды.

Рекомендуемые параметры эксплуатации

Как проверить TL431?

«Прозвонить» эту микросхему как обычный стабилитрон нельзя.

Чтобы убедиться в ее исправности, нужно собрать небольшую схему для проверки.

При этом выходное напряжение в первом приближении описывается формулой

Vo = (1 + R2/R3) * Vref (см даташит*), где Vref — опорное напряжение, равное 2,5 В.

При замыкании кнопки S1 выходное напряжение будет иметь величину 2,5 В (опорное напряжение), при отпускании ее – величину 5 В.

Таким образом, нажимая и отжимая кнопку S1 и измеряя мультиметром сигнал на выходе схемы, можно убедиться в исправности (или неисправности) микросхемы.

Проверочную схему можно сделать в виде отдельного модуля, используя 16-контактный разъем для DIP-микросхемы с шагом выводов 2,5 мм. Питание и щупы тестера подключаются при этом к выходным клеммам модуля.

Для проверки микросхемы нужно вставить ее в разъем, понажимать кнопку и посмотреть на дисплей тестера.

Если микросхема не вставлена в разъем, выходное напряжение будет равным примерно 10 В.

Вот и все! Просто, не правда ли?

*Даташит – это справочные данные (data sheets) на электронные компоненты. Их можно найти поисковиком в Интернете.

С вами был Виктор Геронда. До встречи на блоге!

Обсуждение: 9 комментариев

Так как резисторы делителя одинаковые (напряжение источника делится пополам), то выходной транзистор усилителя (ТЛ-ки) откроется при напряжении, чуть превышающем 5 вольт. На входе R в этом случае с делителя R2-R3 будет сниматься чуть больше 2,5 вольт.

Привет, скажите, хочу переделать блок питания с 12в на 17в, тлка есть, но катод и управляющий по схеме спаяны,так что разрезать дорожку и впаять переменник или как увеличить напряжение,спасибо.

Виктор, если это компьютерный блок питания, то можно включить последовательно напряжения +12В и +5В, как раз и будет 17В. Без всяких переделок.

Здравствуйте, Виктор. Получить 17 В так, как это вы предлагаете, не получится. Дело в том, что 5В и 12В обмотки конструктивно уже соединены в трансформаторе через общую землю. То есть, соединив +12В на +5В вы просто устроите КЗ. 12 В цепь будет работать на 5 В цепь как на нагрузку с низким внутренним сопротивлением и блок питания сгорит. В простейшем случае получить + (-) 17 (или, например + (-) 24 В) можно путем подключения, например к — 5 В выходу и к +12 В выходу. Между ними как раз и будет 17 В, но при этом нужно будет не допускать соприкосновения корпуса БП с землей устройства, которое вы питаете. Аналогично можно получить 24 В, если подключить свое устройство между +12В и -12В. Подобные простые варианты использования БП с повышенным напряжением питания имеют недостатки. Во-первых, ток потребляемый от такого источника будет ограничиваться возможностями БП по току в цепях -12В и -5В. Предельный ток в этих цепях, как правило не больше 0,5 А. Для увеличения тока, нужно вместо штатных диодов типа RF102 (их ток 1 А) поставить диоды Шоттки с отрицательным выходным напряжением или, в крайнем случае, в параллель штатным диодам, можно впаять несколько аналогичных на требуемый ток. При этом также необходимо увеличить емкость электролитических конденсаторов с 100-470 мкФ до 1000-2000 мкФ. Есть и другие способы. Например можно изменить величину резистора в цепи обратной связи (с выхода +5В на первую ножку, например микросхемы DBL494), который определяет постоянный уровень напряжения (+5В). Но в этом случае не во всех блоках питания удается «обмануть» схему стабилизации напряжения и существенно изменить напряжение, более чем на 1,5-2 В без нарушения работы БП (может срабатывать защита или появляться в момент питания выбросы напряжения). Такой фокус проходит в простых, древних схемах. Удавалось, таким образом регулировать напряжение с +/- 12 В до +/-20 В (требуется перепайка электролитов на напряжение не менее 25 В). Есть и другие варианты с доработкой конструкции трансформатора. Обмотки 5 В и 12 В, в большинстве трансформаторов, конструктивно, выполнены в виде нескольких параллельно включенных обмоток. Если их разъединить и включить в качестве дополнительных обмоток, можно получить несколько вариантов более высоких выходных напряжений. К этим дополнительным можно подключить диоды Шоттки, рассчитанные на это напряжение и требуемый ток и получить из компьютерного блока питания мощный, высокостабильный источник питания для Hi-Fi усилителя большой мощности с напряжением от (+/-) 17 до 36 В. Если кому, интересно, то более подробно о этих вариантах я расскажу в ближайших выпусках на своем канале High-End в ФБ и Ютубе. Ссылка по запросу.

Читайте также  Размеры бейсбольной биты

Добрый день. Подскажите как поднять напряжение с5,3 до 12 В на зарядном собрании на базе tl431. Что нужно поменять?

Напряжение на выходе этой схемы будет равно напряжению внутреннего ИОН TL431, то есть 2.5 V.

Схема ниже заменяет обычные стабилитроны с напряжением стабилизации от 2.5 до 36 вольт. Изменяя номиналы резисторов в делителе напряжения (R1, R2) можно менять выходное напряжение.

Рекомендованный максимальный ток для TL431 — 100 мА. Если нужен более мощный стабилитрон, можно использовать следующую схему. Максимальный ток будет зависеть от применяемого транзистора.

На рисунке ниже представлена схема компенсационного стабилизатора напряжения последовательного типа. По сравнению с предыдущей схемой, такой стабилизатор отличается меньшим входным сопротивлением, большим коэффициентом стабилизации, большим выходным током.

Одной из типовых схем включения TL431 является стабилизатор тока.

С помощью TL431 можно увеличить выходное напряжение стабилизатора 7805 и ему подобных.

На следующем рисунке изображена схема индикатора напряжения. Светодиод будет светиться, когда контролируемое напряжение находится между верхним (устанавливается R3,R4) и нижним уровнем (R1,R2).

Компаратор с температурно-компенсированным порогом.

Как работает TL431

Если управляющее напряжение превышает 2.5 вольта (внутренний источник опорного напряжения), выходной транзистор TL431 открывается, в результате чего между катодом и анодом TL431 протекает ток. Если управляющее напряжение меньше 2.5 вольт, то ток между катодом и анодом не протекает (вернее он очень маленький).

TL 431 интегральный стабилитрон

Основные характеристики программируемого источника опорного напряжения TL 431

  • ​ Номинальное рабочее напряжение на выходе от 2,5 до 36 В;
  • Ток на выходе до 100 мА;
  • Мощность 0,2 Ватт;
  • Диапазон рабочей температуры для TL 431C от 0° до 70°;
  • Диапазон рабочей температуры для TL 431A от -40° до +85°.

Точность интегральной схемы TL 431 указывается шестой буквой в обозначении:

  • Точность без буквы – 2%;
  • Буква А – 1%;
  • Буква В – 0, 5%.

Столь широкое его применения обусловлено низкой ценой, универсальным форм-фактором, надёжностью, и хорошей устойчивостью к агрессивным факторам внешней среды. Но также следует отметить точность работы данного регулятора напряжения. Это позволило ему занять нишу в устройствах микроэлектроники.

Основное предназначение TL 431 стабилизировать опорное напряжение в цепи. При условии, когда напряжение на входе источника ниже номинального опорного напряжения, в программируемом модуле транзистор будет закрыт и проходящий между катодом и анодом ток не будет превышать 1 мА. В случае, когда выходное напряжение станет превышать запрограммированный уровень, транзистор будет открыт и электрический ток сможет свободно проходит от катода к аноду.

Схема включения TL 431

В зависимости от рабочего напряжения устройства схема подключения будет состоять из одноступенчатого преобразователя и расширителя (для устройств 2,48 В.) или модулятора небольшой ёмкости (для устройств 3.3 В). А также чтобы снизить риск короткого замыкания, в схему устанавливается предохранитель, как правило, за стабилитроном. На физическое подключение оказывает влияние форм-фактор устройства, в котором будет находиться схема TL 431, и условия окружающей среды (в основном температура).

Стабилизатор на основе TL 431

Простейшим стабилизатором на основе TL 431 является параметрический стабилизатор. Для этого в схему нужно включить два резистора R 1, R 2 через которые можно задавать выходное напряжение для TL 431 по формуле: U вых= Vref (1 + R 1/ R 2). Как видно из формулы здесь напряжение на выходе будет прямо пропорционально отношению R 1 к R 2. Интегральная схема будет держать напряжение на уровне 2,5 В. Для резистора R 1 выходное значение рассчитывается так: R 1= R 2 (U вых/ Vref – 1).

Эта схема стабилизатора, как правило, используется в блоках питания с фиксированным или регулируемым напряжением. Такие стабилизаторы напряжения на TL 431 можно обнаружить в принтерах, плоттерах, и промышленных блоках питания. Если необходимо высчитать напряжение для фиксированных источников питания, то используем формулу Vo = (1 + R 1/ R 2) Vref.

Временное реле

Прецизионные характеристики TL 431 позволяют использовать его не совсем по «прямому» назначению. Из-за того, что входной ток этого регулируемого стабилизатора составляет от 2 до 4 мкА, то используя данную микросхему можно собрать временное реле. Роль таймера в нём будет исполнять R1 который начнёт постепенно заряжаться после размыкания контактов S 1 C 1. Когда напряжение на выходе стабилизатора достигнет 2,5 В, транзистор DA1 будет открыт, через светодиоды оптопары PC 817 начёт проходить ток, а открытый фоторезистор замкнёт цепь.

Термостабильный стабилизатор на основе TL 431

Технические характеристики TL 431 позволяют создавать на его основе термостабильные стабилизаторы тока. В которых резистор R2 выполняет роль шунта обратной связи, на нём постоянно поддерживается значение 2,5 В. В результате значение тока на нагрузке будет рассчитываться по формуле Iн=2,5/R2.

Цоколёвка и проверка исправности TL 431

Форм-фактор TL 431 и его цоколёвка будет зависеть от производителя. Встречаются варианты в старых корпусах TO -92 и новых SOT-23. Не стоит забывать про отечественный аналог: КР142ЕН19А тоже широко распространённый на рынке. В большинстве случаев цоколёвка нанесена непосредственно на плату. Однако не все производители так поступают, и в некоторых случаях вам придётся искать информацию по пинам в техпаспорте того или иного устройства.

TL 431 является интегральной схемой и состоит из 10 транзисторов. Из-за этого проверить её мультиметром невозможно. Для проверки исправности микросхемы TL 431 нужно использовать тестовую схему. Конечно, часто нет смысла искать перегоревший элемент и проще заменить схему целиком.

Программы расчёта для TL 431

В интернете существует множество сайтов, где вы сможете скачать программы-калькуляторы для расчёта параметров напряжения и силы тока. В них можно указывать типы резисторов, конденсаторов, микросхем и прочих составных частей схемы. TL 431 калькуляторы также бывают онлайн, они по функционалу проигрывают устанавливаемым программам, но если вам нужно исключительно входные/выходные и максимальные значения схемы, то они справятся с этой задачей.

Калькулятор для TL431

Для облегчения расчетов можно воспользоваться калькулятором:


Скачать калькулятор для TL431 (103,4 KiB, скачано: 27 442)
Скачать datasheet TL431 на русском (702,6 KiB, скачано: 18 261)

Проверка стабилизатора

Сразу возникает уместный вопрос о том, как проверить tl431 мультиметром. Как показывает практика, одним мультиметром проверить не получится. Для проверки tl431 мультиметром следует собрать схему. Для этого понадобятся: три резистора (один из них подстроечный), светодиод или лампочка, источник постоянного тока 5В.

Резистор R3 необходимо подобрать таким образом, чтобы он ограничил ток до 20мА в цепи питания. Его номинал составляет примерно 100Ом. Резисторы R2 и R3 выполняют роль балансира. Как только напряжение будет 2,5 В на управляющем электроде, то переход светодиода откроется, и напряжение пойдет через него. Эта схема хороша тем, что светодиод выполняет роль индикатора.

Источник постоянного тока – 5В является фиксированным, а управлять микросхемой tl431 можно с помощью переменного резистора R2. Когда питание на микросхему не подается, то диод не горит. После того как сопротивление изменяется при помощи подстроечного резистора, светодиод загорается. После этого мультиметр нужно включить в режим измерения постоянного тока и замерить напряжение на управляющем выводе, которое должно составлять 2,5. Если напряжение присутствует и светодиод горит, то элемент можно считать рабочим.

Читайте также  Станок для изготовления саморезов

Как проверить устройство мультиметром

Эту микросхему невозможно проверить посредством мультиметра, потому что это не просто стабилитрон, а целая интегральная микросхема. Сопротивления между его выводами у различных изготовителей отличаются. По этой причине, чтобы убедиться в исправности, как правило, собирают простые схемы проверки. Для того, чтобы проверить в схеме изображения, на вход подают 12 В. Если устройство исправное, то на выходе должно быть напряжение от 4ю9 до 5 В, а если будет замыкание S1 – 2.5 В. Мультиметр, в таком случае, требуется для измерения результатов тестирования.

Еще схему можно проверить по другому тесту со светодиодом, а при изменении сопротивления второго резистора потенциометра, на электроде управления появится 2.5 В. Диод должен скачкообразно переходить в состояние свечения. Это будет означать то, что устройство исправное. Такой принцип можно применять для того, чтобы создавать индикатор разряда аккумулятора.