Принцип работы эжектора и изготовление своими руками

Чем больше глубина скважины, тем труднее набрать из нее воду. Поэтому для перемещения жидкости по трубопроводу используется насос. Однако при глубине скважины более 7 метров обычного такого прибора будет недостаточно. В этом случае можно приобрести более мощное погружное устройство или дополнить систему эжектором, который позволит полностью разрешить эту проблему.

Принцип работы эжектора можно понять, изучив представленную иллюстрацию

Эжекторный насос – это такое устройство, которое перемещает энергию одной среды в другую. Его принцип действия основан на увеличении напора воды в трубопроводе за счет быстрого движения жидкости по специальному ответвлению.

Такой принцип работы позволяет увеличить мощность уже существующей поверхностной насосной станции. Благодаря этому можно добывать воду из скважины глубиной до 40 метров. Чтобы лучше понять, как работает это устройство, необходимо проследить за его действием.

Принцип работы эжекторного насоса:

  1. Вода поступает через сопло в эжектор. При этом диаметр поперечного сечения сопла меньше диаметра входа в эжекторную систему.
  2. Благодаря прохождению через узкое сопло в камеру с более большим диаметром жидкость существенно ускоряется. Таким образом, увеличивается ее напор. В камере смесителя образуется область с более низким давлением.
  3. Благодаря разряженной атмосфере в камеру начинает всасываться с огромной скоростью жидкость, которая находится под более высоким давлением.

Такое устройство очень полезно для глубоких скважин. Ведь оно позволяет быстро выкачивать воду из самых глубоких отверстий.

Зачем нужны эжекторы и что это такое?

Для многих домовладельцев становится проблемой организация автономного водоснабжения в силу большой глубины шурфа.

Уже с восьмиметровой отметки начинаются проблемы. Для насосных станций с эжекторами те же возможности, что и для помп большой производительности. Использование глубоких источников требует применение мощных насосов погружного типа, которые стоят дорого.

Для чего нужны эжекторы? Чтобы не тратить деньги на дорогие модели. Использование недорогих насосных станций с эжекторами позволяют решить проблему с такой же эффективностью. При этом затраты на модернизацию минимальны. Причем можно улучшить систему локальным методом или приобрести комплекс, который изначально рассчитан для этого.

Принцип работы

Все эжекторы для насосных станций работают по одной и то же схеме. За основу взят принцип Бернулли. В соответствии с ним если ускорить поток, то в зоне перед точкой придания ускорения образуется зона разряженности. Давление в ней ниже, что служит причиной появления втягивающего эффекта. Если добавить его к потоку, формируемому насосной станцией, то результат такой модернизации – увеличения производительности.

Устройство

Какой бы тип устройства не рассматривался, эжекторный насос состоит из:

  • отсека для всасывания;
  • смесительной полости;
  • диффузора;
  • сужающегося патрубка.

Принцип действия в том, что из сопла (патрубка) жидкость выбрасывается с большой скоростью. Отток воды провоцирует появление внутри рабочей камеры пониженного давления, которое и затягивает жидкость. Цикл повторяется непрерывно, что позволяет поддерживать в трубопроводе постоянное давление.

Вентиляция перемешиванием

Различают два основных способа вентиляции зданий: вентиляция вытеснением и вентиляция перемешиванием.

Вентиляция перемешиванием является предпочтительным способом раздачи воздуха в ситуациях, когда необходима, так называемая, комфортная вентиляция. Основой этого метода является то, что подаваемый воздух поступает в рабочую зану уже смешанным с воздухом помещения. Расчет системы вентиляции должен быть сделан таким образом, чтобы воздух, циркулирующий в рабочей зоне, был достаточно комфортным. Другими словами, скорость воздуха не должна быть слишком большой, и температура внутри помещения должна быть более или менее однородной.

Воздухораспределительные устройства (решетки на стенах или потолочные диффузоры ) для вентиляции перемешиванием подбираются с высокой степенью эжекции.

Эжекция — способность подмешивать в приточную струю прилегающий внутренний воздух ( производить перемешивание).


Рис. 1. Эжекция.

Эжекция возможна только при достаточно высокой скорости потока на выходе воздухораспределительного устройства ( более 0,2 м/с), а увеличение скорости потока при заданном расходе воздуха можно добиться при уменьшение площади отверстия выхода воздуха, поэтому при вентиляции перемешиванием воздухораспределительные устройства небольшие и соответственно недорогие, именно поэтому самый распространенный тип — вентиляция перемешиванием. Ограничения на применение эжекционных воздухораспределителей, вернее на желание весь расход выпустить из одного небольшого устройства, накладывает нормируемая скорость воздуха в рабочей зоне, которая должна быть, как мы уже говорили выше, превышать 0,2 м/с. Для обеспечения заданного расхода подбирается определенное количество воздухораспеределителей, так чтобы скорость воздуха в рабочей зоне была не выше номинальной.

Так как скорость потока падает по мере удаления от диффузора. Можно рассчитать скорость в рабочей зоне.

Важно также отметить, что при раздаче воздуха через потолочные диффузоры или решетки установленные в верхней части (Рис.7 а — настилающий эффект), необходимо поддерживать температуру приточного воздуха на градус меньше температуры помещения, иначе теплый воздух просто не опуститься в рабочую зону, а уйдет сразу в вытяжной диффузор .

Теория воздушных струй

На рис. 2, показана воздушная струя, которая формируется в случае, когда воздух принудительно подается в помещение через отверстие в стене. В результате появляется свободная воздушная струя. Если температура воздуха в струе такая же, как и в помещении, она называется свободной изотермической струей.

Распределение и форма

Воздушная струя состоит из нескольких зон с различными режимами потоков и скоростями перемещения воздуха. Зона, представляющая наибольший практический интерес, — это основной участок. Скорость в центре (скорость вокруг центральной оси) является обратно пропорциональной расстоянию от диффузора или клапана, т. е. чем дальше от диффузора, тем меньше скорость воздуха. Воздушная струя полностью развивается на основном участке, и превалирующие здесь условия будут оказывать решающее воздействие на режим потоков в помещении в целом.


Рис. 2. Основной участок воздушной струи, скорость , наклона.

От формы диффузора или проходного отверстия воздухораспределителя зависит форма воздушной струи. Круглые или прямоугольные проходные отверстия создают компактную воздушную струю конической формы. Для того чтобы воздушная струя была абсолютно плоской, проходное отверстие должно быть более чем в двадцать раз шире своей высоты или таким же широким, как помещение. Воздушные веерные струи получаются при прохождении через совершенно круглые проходные отверстия, где воздух может распространяться в любых направлениях, как в приточых диффузорах.


Рис. 3. Различные типы воздушных струй

Скоростной профиль

Скорость воздуха в каждой части струи можно рассчитать математически. Для расчета скорости на определенном расстоянии от выходного отверстия диффузора/клапана, необходимо знать скорость воздуха на выходе из диффузора/клапана, его форму и тип воздушной струи, который им формируется. Таким же образом возможно рассмотреть, как варьируют скорости в каждом профиле струи.

Используя эти расчеты, можно нарисовать кривые скорости для всей струи. Это дает возможность определить области, которые имеют одну и ту же скорость. Эти области называются изовелами (линии постоянной скорости). Убедившись, что изовела, соответствующая 0,2 м/сек, находится за пределами рабочей зоны, можно быть уверенным, что скорость воздуха не превысит этот уровень непосредственно в рабочей зоне.


Рис. 3. Различные изовелы воздушной струи

Коэффициент диффузора

Коэффициент диффузора — постоянная величина, которая зависит от формы диффузора или клапана. Коэффициент можно рассчитать теоретически с использованием следующих факторов: импульсное рассеивание и сужение воздушной струи в точке, где она подается в помещение, и степень турбулентности, созданная диффузором или клапаном.

Читайте также  Как смазать подшипник

На практике коэффициент определяют для каждого типа диффузора или клапана, измеряя скорость воздуха как минимум в восьми точках, находящихся на разном расстоянии от диффузора/клапана и не менее чем в 30 см друг от друга. Эти значения затем наносят на график с логарифмическим масштабом, который показывает замеренные величины для основного участка воздушной струи, а это, в свою очередь, дает значение для константы.

Коэффициент диффузора дает возможность рассчитать скорости воздушной струи и спрогнозировать распределение и путь воздушной струи. Этот коэффициент отличен от коэффициента К, который используется для введения верного значения объема воздуха, выходящего из приточного воздухораспределителя или ирисового клапана.

Эффект настилания

Если воздухораспределитель установлен в достаточной близости от плоской поверхности (обычно это потолок), выходящая воздушная струя отклоняется в ее сторону и стремится течь непосредственно по поверхности. Этот эффект возникает вследствие образования разряжения между струей и поверхностью, а так как нет возможности подмеса воздуха со стороны поверхности, то струя отклоняется в ее сторону. Это явление называется настилающим эффектом.


Рис. 4. Настилающий эффект

Практические эксперименты показали, что расстояние между верхней кромкой диффузора или клапаном и потолком не должно превышать 30 см, чтобы возник настилающий эффект. Эффект настилания можно использовать для того, чтобы увеличить путь холодной воздушной струи вдоль потолка до внедрения ее в рабочую зону. Коэффициент диффузора будет несколько выше при возникновении настилающего эффекта, чем при свободном воздушном потоке. Также важно знать, как крепится диффузор или клапан при использовании коэффициента диффузора для проведения различных расчетов.

Неизотермическая воздушная струя

Картина распределения становится более сложной, когда подаваемый воздух теплее или холоднее, чем внутри помещения. Тепловая энергия, возникающая в результате разницы в плотности воздуха при различных температурах, заставляет более холодный воздушный поток двигаться вниз (струя тонет), а более теплый воздух устремляется вверх (струя всплывает). Это означает, что две различные силы оказывают воздействие на холодную струю, находящуюся у потолка: эффект настилания, который старается прижать ее к потолку, и тепловая энергия, которая стремится опустить ее к полу. На определенном расстоянии от выхода диффузора или клапана тепловая энергия будет преобладать, и воздушная струя в конечном итоге отклонится от потолка.

Отклонение струи и точка отрыва могут быть рассчитаны с помощью формул, основанных на температурных дифференциалах, на типе выходного отверстия диффузора или клапана, а также на скорости воздушного потока и т. д.

Группа компаний «ЕвроХолод» готова реализовать комплексные решения по устройству внутренних инженерных систем и сетей зданий. Мы предоставляем гарантию на купленную у нас технику и все монтажные работы!

Ждем Вашего звонка по телефону: +7(495) 745-01-41

О компании , Отзывы , Наши объекты , Контакты

  • Вентиляция
  • Приточно-вытяжная вентиляция
  • Вентиляция с рекуперацией
  • Системы обеззараживания воздуха
  • Вентиляция с рециркуляцией

Упрощенная аэрация

При небольшом содержании растворенного железа (до 3 мг/л) в воде, для ускорения процессов его окисления, можно применить так называемую упрощенную аэрацию. Метод основан на воздушном инжекторе в котором поток воды проходя через трубку Вентури осуществляет засасывание пузырьков воздуха за счёт разницы давлений. Таким образом, вода пройдя воздушный инжектор насыщается кислородом воздуха, что инициирует процесс окисления растворенных примесей в воде и ускоряет выпадение их в нерастворимый осадок.

Такие воздушные инжекторы бывают разных модификаций, но всегда работают на одном и том же принципе, поэтому большой разницы между ними, кроме размера, нет. На данный момент я встречал: инжектор из акрила или стеклопластика, фото выше (они прозрачные, видно все процессы в трубке Вентури), инжекторы из ПВХ пластика производства фирмы Clack Corp., фото ниже (некоторые из них снабжены байпасным винтом для более тонкой настройки).

Принципиальная схема упрощенной аэрации представлена на рисунке:

Для эффективной работы упрощенной аэрации необходимо соблюдение нескольких условий:

  • воздушный инжектор должен быть установлен между насосом и гидроаккумулятором,
  • гидроаккумулятор должен быть не большого объёма, чем меньше тем лучше (24, 50, 80 литров),
  • насос должен быть погружным ( скважинным, колодезным ) и обладать достаточной мощностью для создания высокого давления в месте установки инжектора (

4 атм) – имеется в виду не значение на реле давления, а возможность насоса создать такое давление с хорошей производительностью (

1 куб в час и больше),

  • грязевые фильтры устанавливать следует перед инжектором,
  • защита, реле, “от сухого хода” должна стоять перед инжектором или отсутствовать, так как избыточное количество пузырьков воздуха воспринимается таким реле как “сухой ход”,
  • колонна фильтра не может быть большой, подбирается по необходимому давлению и потоку на промывку и техническим характеристикам воздушного инжектора, соответственно и фильтрующий материал в колонне должен быть лёгким, например Birm , EcoFerox , SuperFerox и др.,
  • можно отказаться от аэрационной колонны в случаях, когда содержание растворённого железа довольно мало и отсутствует сероводород, при этом, обойтись небольшим змеевиком навитым из труб, а установка воздухоудалителя не является обязательным условием, так как количество воздуха, попадающее в систему, не может создать неудобств конечным потребителям,
  • для создания большего расхода воды и наибольшего насыщения воды кислородом воздуха потребуется удаление экономайзеров в аэраторах смесителей, или увеличение отверстий в них.
  • Следует также отметить что воздушный инжектор довольно сильно сужает проходной диаметр трубы, от чего производительность трубопровода падает. В случае открытия нескольких точек водоразбора (3-х и более) давление может упасть до не комфортного уровня.

    Техническая информация по устройствам упрощённой аэрации:

    Видео работы инжектора

    С момента, когда инжекторы появились в продаже в России, сотни их было установлено ненадлежащим образом, то после гидроаккумулятора, то на обычный городской низконапорный водопровод и так далее, что об эффективной работе этих приборов речи быть не может. Соблюдение правил описанных в этой статье максимизирует полезный эффект воздушных инжекторов для целей водоподготовки.

    Заблокирована возможность оставлять комментарии

    Вентиляция перемешиванием

    Различают два основных способа вентиляции зданий: вентиляция вытеснением и вентиляция перемешиванием.

    Вентиляция перемешиванием является предпочтительным способом раздачи воздуха в ситуациях, когда необходима, так называемая, комфортная вентиляция. Основой этого метода является то, что подаваемый воздух поступает в рабочую зану уже смешанным с воздухом помещения. Расчет системы вентиляции должен быть сделан таким образом, чтобы воздух, циркулирующий в рабочей зоне, был достаточно комфортным. Другими словами, скорость воздуха не должна быть слишком большой, и температура внутри помещения должна быть более или менее однородной.

    Воздухораспределительные устройства (решетки на стенах или потолочные диффузоры ) для вентиляции перемешиванием подбираются с высокой степенью эжекции.

    Эжекция — способность подмешивать в приточную струю прилегающий внутренний воздух ( производить перемешивание).


    Рис. 1. Эжекция.

    Эжекция возможна только при достаточно высокой скорости потока на выходе воздухораспределительного устройства ( более 0,2 м/с), а увеличение скорости потока при заданном расходе воздуха можно добиться при уменьшение площади отверстия выхода воздуха, поэтому при вентиляции перемешиванием воздухораспределительные устройства небольшие и соответственно недорогие, именно поэтому самый распространенный тип — вентиляция перемешиванием. Ограничения на применение эжекционных воздухораспределителей, вернее на желание весь расход выпустить из одного небольшого устройства, накладывает нормируемая скорость воздуха в рабочей зоне, которая должна быть, как мы уже говорили выше, превышать 0,2 м/с. Для обеспечения заданного расхода подбирается определенное количество воздухораспеределителей, так чтобы скорость воздуха в рабочей зоне была не выше номинальной.

    Так как скорость потока падает по мере удаления от диффузора. Можно рассчитать скорость в рабочей зоне.

    Важно также отметить, что при раздаче воздуха через потолочные диффузоры или решетки установленные в верхней части (Рис.7 а — настилающий эффект), необходимо поддерживать температуру приточного воздуха на градус меньше температуры помещения, иначе теплый воздух просто не опуститься в рабочую зону, а уйдет сразу в вытяжной диффузор .

    Теория воздушных струй

    На рис. 2, показана воздушная струя, которая формируется в случае, когда воздух принудительно подается в помещение через отверстие в стене. В результате появляется свободная воздушная струя. Если температура воздуха в струе такая же, как и в помещении, она называется свободной изотермической струей.

    Распределение и форма

    Воздушная струя состоит из нескольких зон с различными режимами потоков и скоростями перемещения воздуха. Зона, представляющая наибольший практический интерес, — это основной участок. Скорость в центре (скорость вокруг центральной оси) является обратно пропорциональной расстоянию от диффузора или клапана, т. е. чем дальше от диффузора, тем меньше скорость воздуха. Воздушная струя полностью развивается на основном участке, и превалирующие здесь условия будут оказывать решающее воздействие на режим потоков в помещении в целом.


    Рис. 2. Основной участок воздушной струи, скорость , наклона.

    От формы диффузора или проходного отверстия воздухораспределителя зависит форма воздушной струи. Круглые или прямоугольные проходные отверстия создают компактную воздушную струю конической формы. Для того чтобы воздушная струя была абсолютно плоской, проходное отверстие должно быть более чем в двадцать раз шире своей высоты или таким же широким, как помещение. Воздушные веерные струи получаются при прохождении через совершенно круглые проходные отверстия, где воздух может распространяться в любых направлениях, как в приточых диффузорах.


    Рис. 3. Различные типы воздушных струй

    Скоростной профиль

    Скорость воздуха в каждой части струи можно рассчитать математически. Для расчета скорости на определенном расстоянии от выходного отверстия диффузора/клапана, необходимо знать скорость воздуха на выходе из диффузора/клапана, его форму и тип воздушной струи, который им формируется. Таким же образом возможно рассмотреть, как варьируют скорости в каждом профиле струи.

    Используя эти расчеты, можно нарисовать кривые скорости для всей струи. Это дает возможность определить области, которые имеют одну и ту же скорость. Эти области называются изовелами (линии постоянной скорости). Убедившись, что изовела, соответствующая 0,2 м/сек, находится за пределами рабочей зоны, можно быть уверенным, что скорость воздуха не превысит этот уровень непосредственно в рабочей зоне.


    Рис. 3. Различные изовелы воздушной струи

    Коэффициент диффузора

    Коэффициент диффузора — постоянная величина, которая зависит от формы диффузора или клапана. Коэффициент можно рассчитать теоретически с использованием следующих факторов: импульсное рассеивание и сужение воздушной струи в точке, где она подается в помещение, и степень турбулентности, созданная диффузором или клапаном.

    На практике коэффициент определяют для каждого типа диффузора или клапана, измеряя скорость воздуха как минимум в восьми точках, находящихся на разном расстоянии от диффузора/клапана и не менее чем в 30 см друг от друга. Эти значения затем наносят на график с логарифмическим масштабом, который показывает замеренные величины для основного участка воздушной струи, а это, в свою очередь, дает значение для константы.

    Коэффициент диффузора дает возможность рассчитать скорости воздушной струи и спрогнозировать распределение и путь воздушной струи. Этот коэффициент отличен от коэффициента К, который используется для введения верного значения объема воздуха, выходящего из приточного воздухораспределителя или ирисового клапана.

    Эффект настилания

    Если воздухораспределитель установлен в достаточной близости от плоской поверхности (обычно это потолок), выходящая воздушная струя отклоняется в ее сторону и стремится течь непосредственно по поверхности. Этот эффект возникает вследствие образования разряжения между струей и поверхностью, а так как нет возможности подмеса воздуха со стороны поверхности, то струя отклоняется в ее сторону. Это явление называется настилающим эффектом.


    Рис. 4. Настилающий эффект

    Практические эксперименты показали, что расстояние между верхней кромкой диффузора или клапаном и потолком не должно превышать 30 см, чтобы возник настилающий эффект. Эффект настилания можно использовать для того, чтобы увеличить путь холодной воздушной струи вдоль потолка до внедрения ее в рабочую зону. Коэффициент диффузора будет несколько выше при возникновении настилающего эффекта, чем при свободном воздушном потоке. Также важно знать, как крепится диффузор или клапан при использовании коэффициента диффузора для проведения различных расчетов.

    Неизотермическая воздушная струя

    Картина распределения становится более сложной, когда подаваемый воздух теплее или холоднее, чем внутри помещения. Тепловая энергия, возникающая в результате разницы в плотности воздуха при различных температурах, заставляет более холодный воздушный поток двигаться вниз (струя тонет), а более теплый воздух устремляется вверх (струя всплывает). Это означает, что две различные силы оказывают воздействие на холодную струю, находящуюся у потолка: эффект настилания, который старается прижать ее к потолку, и тепловая энергия, которая стремится опустить ее к полу. На определенном расстоянии от выхода диффузора или клапана тепловая энергия будет преобладать, и воздушная струя в конечном итоге отклонится от потолка.

    Отклонение струи и точка отрыва могут быть рассчитаны с помощью формул, основанных на температурных дифференциалах, на типе выходного отверстия диффузора или клапана, а также на скорости воздушного потока и т. д.

    Группа компаний «ЕвроХолод» готова реализовать комплексные решения по устройству внутренних инженерных систем и сетей зданий. Мы предоставляем гарантию на купленную у нас технику и все монтажные работы!

    Ждем Вашего звонка по телефону: +7(495) 745-01-41

    О компании , Отзывы , Наши объекты , Контакты

    • Вентиляция
    • Приточно-вытяжная вентиляция
    • Вентиляция с рекуперацией
    • Системы обеззараживания воздуха
    • Вентиляция с рециркуляцией

    Устройство и принцип действия

    Эжекторы ЭГС(У) являются аппаратами индивидуального проектирования и рассчитываются под технические параметры конкретного объекта.

    Номинальные рабочие параметры и технические характеристики конкретного аппарата задаются в Техническом Задании или Опросном Листе при заказе аппарата и указываются в Техническом паспорте и на габаритном чертеже эжектора.

    Эжектор ЭГС(У) это струйный аппарат, имеющий расчетные геометрические размеры в зависимости от параметров откачиваемого газа и активного газа.

    Принципиальная конструкция эжектора ЭГС(У) условно показана на рис.1.

    Разновидности

    Насосы этого типа разделяются на модели с вмонтированным эжектором и выносным. Разберемся с каждым более подробно.

    С выносным эжектором

    Такие насосы для забора воды необходимо опускать вглубь колодца или скважины. Насос с выносным эжектором имеет две трубы. По одной из них жидкость под определенным напором подается в эжектор. Это приводит к тому, что вырабатывается своеобразная всасывающая струя.

    Насос с внешним эжектором по своим характеристикам значительно уступает моделям с встроенным эжектором. Все дело в специфике конструкции.

    Схема монтажа двух типов эжекторных насосов

    Так, насос с эжектором выносного типа будет «бояться» загрязненной воды, и попадания внутрь конструкции воздуха. Его КПД заметно ниже, но выносной эжектор насоса имеет и свое существенное преимущество – его можно располагать внутри жилого помещения.

    С вмонтированным эжектором

    Внутренний центробежный эжекторный насос поднимает воду с помощью созданного искусственным путем разряжения.

    Ввиду особенностей конструкции, эжекторный насос стоит намного дороже обычных устройств этого типа, так как способен поднимать воду даже с больших глубин вплоть до 50-и метров.

    Высокая производительность, правда, несколько компенсируется за счет большого уровня шума, издаваемого во время работы устройства.

    Поэтому, эжекторные насосы монтируются исключительно в подвалах и подсобных помещениях жилых домов.

    Современный пароэжекторный вакуумный электронасос – хорошее решение для организации системы водоснабжения на большом предприятии и при орошении больших территорий с растительностью.

    3 Какие разновидности эжекторных насосных станций?

    Эжекторы на водозаборную установку могут быть установлены 2 способами. Первый подразумевает, что эжектор является одним из составляющих элементов конструкции насосной станции. Во втором случае эжектор является внешним узлом. Выбор конкретного варианта будет зависеть, прежде всего, от требований, которые предъявляются к водозаборной установке.
    к меню ↑

    3.1 Встроенные устройства

    Этот вариант подразумевает, что создание напора для эжектора осуществляется в самой установке. За счет этого можно существенным образом сократить габариты насосной установки. Насосные станции со встроенным эжектром являются почти невосприимчивыми к нахождению в воде различного рода мелких частиц.

    То есть, в фильтровании воды нет необходимости. Данная разновидность водозаборных установок применяется, главным образом, для забора воды с глубины, которая составляет более восьми с половиной метров. Позволяет создавать напор необходимой мощности чтобы обеспечить садово-огородный участок больших размеров, где вода используется преимущественно для поливки.

    Подключение эжекторного насоса

    Однако насосные станции со встроенными эжекторами обладают таким недостатком как повышенный уровень шума в процессе работы. По этой причине не рекомендуется устанавливать данную разновидность водозаборных установок в непосредственной близости от жилого здания.

    Лучше всего если такая установка будет смонтирована в отдельном подсобном помещении. Электрический двигатель для данной разновидности насосных установок следует подбирать таким образом, чтобы он мог обеспечивать необходимую систему циркуляции воды.
    к меню ↑

    3.2 Внешние устройства

    При использовании внешнего эжектора отдельно от водозаборной установки должен быть установлен дополнительный бак сбора воды. В таком баке будет создаваться необходимый для функционирования системы напор и дополнительная разрядка, что, в свою очередь, существенным образом уменьшит степень оказываемой на насосную установку нагрузки. Сам же внешний эжектор следует подсоединять к погружаемой части водопроводной системы.

    Для обеспечения нормального функционирования внешнего эжектора в скважине необходимо будет проложить две трубы, однако это может наложить определенного рода ограничения на допустимый диаметр. Данное конструктивное решение, несмотря на то, что снижает коэффициент полезного действия водопроводной системы примерно на тридцать пять процентов, позволяет выкачивать воду с глубины до пятидесяти метров и значительно сократить степень шума в процессе работы насосной установки.

    Водозаборная станция с внешним эжектором может быть расположена непосредственно внутри частного дома. К примеру, в различного рода помещениях подвального типа. При этом расстояние от скважины может быть от двадцати до сорока метров.

    На степень эффективности это не оказывает абсолютно никакого влияния. Именно этим и объясняется столь широкая популярность данной разновидности водозаборных станций среди населения. Все оборудование располагается в одном месте, от чего существенным образом увеличивается эксплуатационный период, значительно упрощается процесс осуществления различного рода профилактических работ и настройки водопроводной системы.
    к меню ↑

    Упрощенная аэрация

    При небольшом содержании растворенного железа (до 3 мг/л) в воде, для ускорения процессов его окисления, можно применить так называемую упрощенную аэрацию. Метод основан на воздушном инжекторе в котором поток воды проходя через трубку Вентури осуществляет засасывание пузырьков воздуха за счёт разницы давлений. Таким образом, вода пройдя воздушный инжектор насыщается кислородом воздуха, что инициирует процесс окисления растворенных примесей в воде и ускоряет выпадение их в нерастворимый осадок.

    Такие воздушные инжекторы бывают разных модификаций, но всегда работают на одном и том же принципе, поэтому большой разницы между ними, кроме размера, нет. На данный момент я встречал: инжектор из акрила или стеклопластика, фото выше (они прозрачные, видно все процессы в трубке Вентури), инжекторы из ПВХ пластика производства фирмы Clack Corp., фото ниже (некоторые из них снабжены байпасным винтом для более тонкой настройки).

    Принципиальная схема упрощенной аэрации представлена на рисунке:

    Для эффективной работы упрощенной аэрации необходимо соблюдение нескольких условий:

    • воздушный инжектор должен быть установлен между насосом и гидроаккумулятором,
    • гидроаккумулятор должен быть не большого объёма, чем меньше тем лучше (24, 50, 80 литров),
    • насос должен быть погружным ( скважинным, колодезным ) и обладать достаточной мощностью для создания высокого давления в месте установки инжектора (

    4 атм) – имеется в виду не значение на реле давления, а возможность насоса создать такое давление с хорошей производительностью (

    1 куб в час и больше),

  • грязевые фильтры устанавливать следует перед инжектором,
  • защита, реле, “от сухого хода” должна стоять перед инжектором или отсутствовать, так как избыточное количество пузырьков воздуха воспринимается таким реле как “сухой ход”,
  • колонна фильтра не может быть большой, подбирается по необходимому давлению и потоку на промывку и техническим характеристикам воздушного инжектора, соответственно и фильтрующий материал в колонне должен быть лёгким, например Birm , EcoFerox , SuperFerox и др.,
  • можно отказаться от аэрационной колонны в случаях, когда содержание растворённого железа довольно мало и отсутствует сероводород, при этом, обойтись небольшим змеевиком навитым из труб, а установка воздухоудалителя не является обязательным условием, так как количество воздуха, попадающее в систему, не может создать неудобств конечным потребителям,
  • для создания большего расхода воды и наибольшего насыщения воды кислородом воздуха потребуется удаление экономайзеров в аэраторах смесителей, или увеличение отверстий в них.
  • Следует также отметить что воздушный инжектор довольно сильно сужает проходной диаметр трубы, от чего производительность трубопровода падает. В случае открытия нескольких точек водоразбора (3-х и более) давление может упасть до не комфортного уровня.

    Техническая информация по устройствам упрощённой аэрации:

    Видео работы инжектора

    С момента, когда инжекторы появились в продаже в России, сотни их было установлено ненадлежащим образом, то после гидроаккумулятора, то на обычный городской низконапорный водопровод и так далее, что об эффективной работе этих приборов речи быть не может. Соблюдение правил описанных в этой статье максимизирует полезный эффект воздушных инжекторов для целей водоподготовки.

    Заблокирована возможность оставлять комментарии