Маркировка керамических конденсаторов

Маркировка керамических конденсаторов

Правильно выбрать конденсатор для микросхемы определенного назначения помогает маркировка, нанесенная на корпус. Но у конденсаторов она сложная и разнообразная, поэтому определить характеристики этих элементов затруднительно, особенно если они имеют незначительную площадь поверхности. Параметры, указываемые в обозначении: код производителя, номинальное напряжение, емкость, допустимое отклонение от номинала, температурный коэффициент емкости (ТКЕ).

Обозначение конденсатора на схеме

На электрических принципиальных схемах конденсатор отображается в виде двух параллельных линий символизирующих его основные части: две обкладки и диэлектрик между ними. Возле обозначения конденсатора обычно указывают его номинальную емкость, а иногда его номинальное напряжение.

Номинальное напряжение – значение напряжения указанное на корпусе конденсатора, при котором гарантируется нормальная работа в течение всего срока службы конденсатора. Если напряжение в цепи будет превышать номинальное напряжение конденсатора, то он быстро выйдет из строя, может даже взорваться. Рекомендуется ставить конденсаторы с запасом по напряжению, например: в цепи напряжение 9 вольт – нужно ставить конденсатор с номинальным напряжением 16 вольт или больше.

Правила расшифровки маркировки

Сначала разберемся с цифровой маркировкой конденсаторов. Ели устройство имеет маленькие размеры, то для указания емкости используется стандарт EIA. При наличии в коде только двух цифр, после которых следует буква, их значение соответствует номинальной емкости. Третья цифра в коде представляет собой множитель нуля. Если она находится в диапазоне от 0 до 6, то к первым двум цифрам необходимо добавить соответствующее количество нулей. Скажем, обозначение «463» равно 46*10 3 .

Единицы измерения зависят от размеров устройства, и для маленьких это — пикофарады. В остальных случаях принято использовать микрофарады. Когда цифровое обозначение будет расшифровано, необходимо переходить к буквам. Когда они расположены в составе первых двух символов, то используется один из 2 способов:

  • Буква «R» заменяет запятую — надпись 3R2 соответствует емкости в 3,2 пикофарады.
  • Буква «р» используется в качестве десятичной запятой — р60 соответствует 0,6 пикофарадам. Буквы «n» и «m» выполняют аналогичную задачу, но соответствуют нано- и микрофараде.

Когда может помочь онлайн-калькулятор

Также может использоваться и смешанная маркировка конденсаторов, расшифровка которой проводится похожим образом. Однако первая буква в этом случае указывает на минимальную рабочую температуру элемента. Затем следует номинальная емкость устройства и показатели предельных отклонений. На совсем маленьких устройствах может быть нанесен цветовой код. В такой ситуации вам может помочь расшифровать маркировку конденсаторов калькулятор онлайн. Это позволит сэкономить массу времени.

Кодовая маркировка конденсаторов 3 цифрами

К примеру конденсатор с обозначением 153 означает что его емкость составляет 15000 пФ.

Код Пикофарады, пФ, pF Нанофарады, нФ, nF Микрофарады, мкФ, μF
109 1.0 пФ 0.0010нф
159 1.5 пФ 0.0015нф
229 2.2 пФ 0.0022нф
339 3.3 пФ 0.0033нф
479 4.7 пФ 0.0048нф
689 6.8 пФ 0.0068нФ
100 10 пФ 0.01 нФ
150 15 пФ 0.015 нФ
220 22 пФ 0.022 нФ
330 33 пФ 0.033 нФ
470 47 пФ 0.047 нФ
680 68 пФ 0.068 нФ
101 100 пФ 0.1 нФ
151 150 пФ 0.15 нФ
221 220 пФ 0.22 нФ
331 330 пФ 0.33 нФ
471 470 пФ 0.47 нФ
681 680 пФ 0.68 нФ
102 1000 пФ 1 нФ
152 1500 пФ 1.5 нФ
222 2200 пФ 2.2 нФ
332 3300 пФ 3.3 нФ
472 4700 пФ 4.7 нФ
682 6800 пФ 6.8 нФ
103 10000 пФ 10 нФ 0.01 мкФ
153 15000 пФ 15 нФ 0.015 мкФ
223 22000 пФ 22 нФ 0.022 мкФ
333 33000 пФ 33 нФ 0.033 мкФ
473 47000 пФ 47 нФ 0.047 мкФ
683 68000 пФ 68 нФ 0.068 мкФ
104 100000 пФ 100 нФ 0.1 мкФ
154 150000 пФ 150 нФ 0.15 мкФ
224 220000 пФ 220 нФ 0.22 мкФ
334 330000 пФ 330 нФ 0.33 мкФ
474 470000 пФ 470 нФ 0.47 мкФ
684 680000 пФ 680 нФ 0.68 мкФ
105 1000000 пФ 1000 нФ 1 мкФ

Параметры конденсаторов

Эти устройства предназначены для накопления электрического заряда. Емкость измеряется в специальных единицах, именуемых фарадами (Ф, или F). Однако 1 фарад – колоссальная величина, которая не используется в радиотехнике. Для конденсаторов применяется микрофарад (мкФ, µF) – фарад, разделенный на миллион. Единица обозначается как мкФ практически на всех типах конденсаторов. В теоретических расчетах иногда можно увидеть миллифарад (мФ, mF), что равняется фараду, деленному на тысячу. В маленьких конденсаторах применяется нанофарад (нФ, nF) и пикофарад (пФ, pF), что соответственно равняется 10 -9 и 10 -12 фарад. Это обозначение очень важно, так как используется в маркировке либо напрямую, либо с помощью заменяемых значений.

Таблица значений фарад

Где и как используются конденсаторы?

Перед тем как начать рассказывать об области применения конденсаторов, вспомним, что конденсатор это — две пластины, разделенные диэлектриком. Поэтому ток через конденсатор (в первом приближении) идти не может. Однако в цепи с конденсатором могут происходить процессы заряд и разряда. И во время этих процессов в цепи будут протекать токи заряда или разряда.

Таким образом, если переменное напряжение будет приложено к цепи с конденсатором, в ней будет протекать переменный ток. Поэтому конденсатор можно охарактеризовать такой величиной как емкостное сопротивление (обозначается в технической литературе как Хс).

Емкостное сопротивление зависит от ёмкости конденсатора и частоты приложенного напряжения. Чем ёмкость и частота больше, тем меньше емкостное сопротивление. На этих эффектах основано применение конденсаторов в схемах фильтрации источников питания.

В компьютерных блоках питания для получения постоянных напряжений +3,3, +5, и +12 В используется двухполупериодная схема выпрямление с двумя диодами и фильтрующим конденсатором. Без конденсатора на нагрузке будет пульсирующее напряжение одной полярности.

Источник постоянного напряжения можно представить в виде эквивалентной схемы из генератора и двух сопротивлений, где R1 — это внутреннее сопротивление выпрямителя, а R2 — емкостное сопротивление конденсатора.

Генератор – это сумма постоянного и переменного напряжений (пульсирующее напряжение содержит в себе постоянную и переменную составляющую).

Таким образом, сигнал с генератора подается на частотно-зависимый делитель напряжения. Выходной сигнал снимается с нижнего плеча (конденсатора). Для постоянного напряжения сопротивление конденсатора очень велико, гораздо больше сопротивления выпрямителя. Поэтому уменьшения постоянного напряжения не происходит.

Для переменного напряжения сопротивления конденсатора очень мало, гораздо меньше сопротивления выпрямителя, поэтому происходит сильное ослабление переменной составляющей.

В реальной схеме ситуация несколько сложнее, так как к нижнему плечу делителя подключена нагрузка, обладающая сопротивлением. Поэтому полностью избавиться от пульсаций нельзя, можно только свести их к какому-то небольшому значению.

Вообще, такая комбинация активного сопротивления и конденсатора называется фильтром нижних частот, который пропускает постоянную составляющую и какой-то диапазон низких частот.

Чем выше частота входного переменного напряжения, тем сильнее оно ослабляется.

Так как необходимо сильное подавление пульсаций переменного напряжения, то используется электролитические конденсаторы большой емкости.

Читайте также  Розетка прицепа 7 контактов

Назначение керамических SMD конденсаторов на материнской плате — подавлять высокочастотные помехи, возникающие при переключении транзисторов в микросхемах. Таким образом, электролитические конденсаторы фильтруют относительно низкочастотные помехи и пульсации, а керамические — более высокочастотные.

Приведем еще один пример разделения переменной и постоянной составляющей. Пусть в схеме на рисунке сигнал в точке А будет иметь постоянную составляющую 5 В и переменную амплитудой 2 В.

После конденсатора, в точке В будет уже только переменная составляющая той же амплитудой 2 В (если емкостное сопротивление конденсатора мало для такой частоты). Интересно, не правда ли?

По существу, это тоже частотно-зависимый делитель напряжения, где в виде нижнего плеча выступает сопротивление нагрузки. Такую комбинацию называют фильтром верхних частот, который не пропускает постоянную составляющие и низкие частоты, так как в емкостное сопротивление будет для них большим.

Заканчивая, отметим маленькую деталь: так как максимальное напряжение на конденсаторе будет равно сумме постоянной и переменной составляющей, его рабочее напряжение должно быть не менее этой величины.

Конденсатор

Основной параметр:
ёмкость
Единица измерения:
Фарад

Конденсатор — это пассивный электронный прибор, который способен накапливать электрический заряд (заряжаться). Основной характеристикой конденсаторов является емкость, которую измеряют в фарадах (Ф, F).

Фарад — большая величина, на практике используются дольные единицы измерения емкости конденсаторов: микрофарады (мкФ, µF), нанофарады (нФ, nF), пикофарады (пФ, pF).

1 Ф = 1 000 000 мкФ

1 мкФ = 1 000 нФ = 1 000 000 пФ

Номинал конденсатора на схемах указывают рядом с его обозначением. При емкости менее 10000 пФ ставят число пикофарад без обозначения размерности, например, 22, 180, 6800. Для емкости 0,01 мкФ и более ставят число микрофарад. Зарубежные обозначения часто заменяют греческую букву µ (мю) на латинскую u («uF» вместо «µF»).

Конденсаторы используют для сглаживания тока в электрических цепях, в колебательных системах (колебательных контурах, генераторах импульсов, мультивибраторах).

Типы конденсаторов

Конденсаторы состоят из двух пластин (обкладок), разделенных слоем диэлектрика. По материалу диэлектрика конденсаторы разделяют на керамические, электролитические, бумажные, слюдяные и другие.

Керамические конденсаторы имеют емкость от единиц до тысяч пикофарад. Электролитические конденсаторы обладают большей емкостью, которая может достигать тысяч микрофарад. Большинство электролитических конденсаторов имеют положительный и отрицательный полюса, что требует включения их в схемы с соблюдением полярности.

Полярность электролитического конденсатора

На корпусе электролитического конденсатора в большинстве случаев есть полоска, обозначающая отрицательный вывод. Кроме того, длина положительного вывода конденсатора немного больше, чем отрицательного.

Рабочее напряжение

Конденсаторы имеют рабочее напряжение, которое чаще всего указывают на корпусе. При подборе конденсатора следует выбирать конденсатор с напряжением равным или большим, указанному в схеме.

Цифровой код на керамических конденсаторах

При обозначении номинала на керамических конденсаторах используется цифровая кодировка, в которой последняя цифра обозначает количество нулей (емкость в пикофарадах).

103 — 10 000 пФ (0.01 мкФ)

104 — 100 000 пФ (0.1 мкФ)

154 — 150 000 пФ (0.15 мкФ)

224 — 220 000 пФ (0.22 мкФ)

Параллельное и последовательное соединение конденсаторов

При параллельном соединении конденсаторов их емкость складывается. А допустимое напряжение будет равно напряжению конденсатора с самым малым значением этого напряжения.

При последовательном соединении конденсаторов общую емкость можно рассчитать по приводимой формуле. Общее допустимое напряжение при этом будет равно сумме всех допустимых напряжений конденсаторов.

Переменный и подстроечный конденсатор

Конденсаторы могут обладать не только постоянной емкостью, но и переменной емкостью, которую можно плавно менять в заданных пределах.

Конденсаторы с переменной емкостью используют в колебательных контурах радиоприемников и ряде других устройств.

Подстроечные конденсаторы применяются для настройки работы электронной схемы, когда в процессе работы устройства их емкость не меняется.

Дополнение

Цветовая маркировка конденсаторов

Ещё примеры маркировки конденсаторов:

Кондесаторы

Конденсатор — это устройство способное накапливать электрический заряд. Единицей измерения емкости конденсатора принято считать Фарад (в честь английского физика Майкла Фарадея).

Конденсатор представляет из себя два электрода на которых сохраняется электрический заряд и диэлектрика который не дает течь току между электродами внутри конденсатора. При комбинировании разных материалов диэлектриков и электродов создают конденсаторы обладающие разными свойствами. Конденсаторы бывают бумажные, воздушные, керамические, пленочные, металлобумажные, оксидные, слюдянные, электоролетические, вакуумные и другие. Например электролетические конденсаторы обладают полярностью и большой емкостью. Керамические большей стабильностью емкости при их изготовлении, малыми размерами. Конденсаторы бывают постоянные и переменные (подстроечные). Конденсаторы широко применяются в современной электронике в качестве фильтров, разделительных устройств, согласующих устройств и т.д. Например в антенных усилителях, конденсатор служит для разделения выхода усилителя от питания. В блоках питания конденсаторы выполняют функции фильтра, сглаживают пульсации напряжения.

Один Фарад достаточно большая емкость, по этому в электронике используются приставки:

1 мкФ (микрофарад) = 10 -6 Ф

1 нФ (нанофарад) = 10 -9 Ф

1 пФ (пикофарад) = 10 -12 Ф

1 мкФ = 1000 нФ = 1000000 пФ

Конденсаторы обладают следующими параметрами:

С ном — номинальная емкость;

U ном — номинальное напряжение, то есть напряжение до которого конденсатор будет нормально работать сохраняя свои параметры;

Сопротивление, индуктивность, TKE- температурный коэффициент емкости и другие.

Схематическое изображение конденсаторов

Конденсатор постоянной емкости
Конденсатор полярный
Конденсатор подстроечный

Маркировка конденсаторов

Полное обозначение Сокращенное обозначение на корпусе
Обозначение единиц измерения Примеры обозначения Обозначение единиц измерения Примеры обозначения
Старое Новое Старое Новое
Пикофарады
0. 999 пФ
пФ 0,82 пФ
5,1 пФ
36 пФ
П Р 5П1
36П
Р82
5Р1
36Р
Нанофарады
100. 999999 пФ
нФ 120 пФ
3300 пФ
680000 пФ
Н n 3Н3
68Н
n12
3n3
68n
Микрофарады
1. 999 мкФ
мкФ 0,022 мкФ
0,15 мкФ
2,2 мкФ
10 мкФ
М M 22H
M15
2M2
10M
22n
M15
2M2
10M

Цветовая маркировка отечественных конденсаторов

Цветовая маркировка танталовых конденсаторов

Цветовая маркировка импортных конденсаторов

Буквенная маркировка импортных конденсаторов

393J Первые две буквы означают номинал конденсатора в пикофарадах, последняя означает множитель, то есть сколько нолей добавить. В нашем случае получается 39000 пФ, или 39нФ, или 0,039 мкФ.

400V означает рабочее напряжение.

Второй пример 684J = 68 0000 пФ = 680 нФ = 0,68 мкФ. Рабочее напряжение 250 В.

Бывают конденсаторы с двумя цифрами до знака J, в этом случае первая цифра означает количество пФ, а вторая множитель.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Классификация и система условных обозначений

ГОСТ Р 57440—2017

Предисловие

1 РАЗРАБОТАН Акционерным обществом «Российский научно-исследовательский институт «Элвктронстандарт» (АО «РНИИ «Элвктронстандарт») совместно с акционерным обществом «Научно-исследовательский институт «Гириконд» (АО «НИИ «Гирикоцц)

2 ВНЕСЕН Техническим комитетом ло стандартизации ТК 303 «Изделия электронной техники, материалы и оборудование»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 4 апреля 2017 г. № 256-ст

4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об измене-ниях к настоящему стандарту публикуется в ежегодном (по соспюянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано е ближайшем выпуске информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользователя — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет ()

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ГОСТ Р 57440—2017

Содержание

1 Область применения. 1

2 Нормативные ссылки. 1

3 Общие положения. 1

4 Классификация. 2

5 Система условных обозначений. 2

Приложение А (обязательное) Обозначения групп неперспективных (устаревших) конденсаторов . . 6

ГОСТ Р 57440—2017

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Классификация и система условных обозначений Capacitors. Classification and system of designations

Дата введения — 2017—08—01

1 Область применения

Настоящий стандарт распространяется на конденсаторы, применяемые е радиоэлектронной аппаратуре, и устанавливает их классификацию исистему условных обозначений. Настоящий стандарт не распространяется на конденсаторы, разработанные до срока введения его в действие, условные обозначения которых отличаются от установленных настоящим стандартом.

Настоящий стандарт предназначен для применения предприятиями, организациями и другими субъектами научной и хозяйственной деятельности независимо от форм собственности и подчинения, а также федеральными органами исполнительной власти Российской Федерации, участвующими в разработке. производстве, эксплуатации конденсаторов в соответствии с действующим законодательством.

2 Нормативные ссылки

8 настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 15150 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 28864 Ряды предпочтительных значений для резисторов и конденсаторов

ГОСТ Р 57437—2017 Конденсаторы. Термины и определения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов а информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии а сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию зтого стандарта с учетом всех внесенных а данную версию изменений. Еспи заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию зтого стандарта с указанным выше годом утверждения (принятия). Еспи после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то зто положение рекомендуется применять безучетв данного изменения. Если ссылочный стандарт отменен без замены, то положение. в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Общие положения

3.1 В настоящем стандарте применены термины по ГОСТ Р 57437—2017.

3.2 Обозначения групп перспективных конденсаторов серийного производства и вновь разрабатываемых конденсаторов приведены в табпице 1.

3.3 Обозначения групп неперспективных конденсаторов приведены в приложении А.

ГОСТ Р 57440—2017

4 Классификация

4.1 Класс конденсаторов подразделяют на подклассы в зависимости от характера изменения емкости:

• конденсаторы постоянной емкости;

• конденсаторы переменной емкости;

4.2 Подклассы конденсаторов подразделяют на группы в соответствии с таблицей 1.