Низкотемпературная пайка алюминия

Низкотемпературная пайка алюминия

Для алюминия и алюминиевых сплавов применяют различные способы пайки. Пайка бывает:

  • brazing и
  • soldering, соответственно.
  • К твердым относят припои с высокой температурой плавления (ликвидус выше 450 °С).
  • Мягкие припои плавятся ниже температуры 450 °С.


Рисунок – Ремонт алюминиевой трубы путем пайки мягким припоем [2]

Общие свойства

Удивительно, что, несмотря на классификацию ГОСТа, даже в учебниках существует разная подача материалов.

Так, некоторые авторы в качестве минимальной температуры, рекомендуемой для применения высокотемпературных припоев, называют 500 °С.

Существует большое количество готовых композиций, рекомендуемых к применению при повышенных температурах. Часто в состав высокотемпературных припоев входит:

  • медь;
  • серебро;
  • цинк;
  • фосфор.

Для изменения свойств в высокотемпературные сплавы добавляют кремний, германий и некоторые другие элементы. Низкотемпературными считаются припои:

  • на основе свинца;
  • олова;
  • с добавлением сурьмы.

Выбор конкретных припоев определяется видом сплава, из которого сделаны детали, и условиями пайки.

Иногда в низкотемпературные припои вводят цинк для повышения коррозионной стойкости шва, и разрабатывают специальные низкотемпературные сплавы для конкретных условий использования. В быту низкотемпературную пайку проводят с применением паяльника, а высокотемпературную – газовой горелкой.

Какие виды пайки бывают?

В зависимости от используемых припоев и физико-химических процессов, происходящих при пайке, она делится на несколько категорий.

По типу используемых припоев пайка бывает двух видов:

  • низкотемпературная (припой нагревается до 450°C) — для этой пайки применяют легкоплавкие припои;
  • высокотемпературная (припой нагревают свыше 450°C) — используется тугоплавкий припой.

Для первого вида пайки применяется электрический нагрев припоя при помощи паяльника, во втором же варианте используют нагревание при помощи горелки. В бытовых целях, в основном, применяется первый вариант.

В зависимости от физико-химической природы процесса пайки она делится на следующие виды:

  • капиллярная — смачивание деталей припоем и формирование переходного слоя происходит за счет капиллярного натяжения;
  • диффузионная — выполняется в результате взаимной диффузии материала припоя и основного металла;
  • контактно-реакционная — происходит с образованием твердого раствора или эвтектики в контактирующих местах;
  • реактивно-флюсовая — в процессе пайки припой, при нагревании, образуется за счет химической реакции металла и флюса.

Пайка полупроводников

Установки для автоматической сварки продольных швов обечаек — в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки — в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Поверхность изделия из полупроводника предварительно облуживают в расплаве припоя с помощью ультразвукового паяльника, способом гальванического покрытия (никелирование, золочение). Пайку производят в печах с контролируемой средой (нейтральной, восстановительной), в вакууме или методом сопротивления предварительно облуженных поверхностей. При соединении изделий с уже готовым переходом требуется строго выдерживать температуру нагрева, для чего применяют терморегуляторы.

Пайку тонких электрических выводов можно осуществлять на воздухе микропаяльниками с использованием защитных или активных флюсов (спиртового раствора канифоли, флюса на основе хлористого цинка и хлористого аммония). После флюсовой пайки изделие промывают деионизированной водой и сушат.

Для получения электрических контактов малой площади выводы присоединяют с помощью связи, состоящей из металлического порошка компонентов припоя (олова, свинца, кадмия, алюминия, индия, сурьмы, фосфора) с разлагающейся при нагреве органической добавкой (смесь нитроцеллюлозы с бутилацетатом).

Операции по сборке изделия под пайку выполняют в сборочных линейках, имеющих контролируемую атмосферу и состоящих из нескольких соединенных между собой скафандров, в которые подается воздух или азот определенной температуры и влажности. При пайке полупроводниковых материалов припои должны образовывать электронно-дырочный переход или невыпрямляющий омический контакт. В производстве германиевых и кремниевых приборов в качестве основы припоев применяют алюминий, индий и сплавы на основе олова и свинца. Для создания в месте контакта проводимости электронного типа в основу припоев в качестве примесей вводят фосфор, мышьяк, сурьму и висмут. Для обеспечения невыпрямляющего омического контакта в основу припоев добавляют бор и галлий.

При создании переходов и омических контактов на интерметаллических соединениях применяют олово, висмут, сурьму, цинк, кадмий и др.

Пайку полупроводников используют как при внутреннем монтаже приборов — припайка токоотводов. напайка перехода на кристаллодержатель, так и при наружном монтаже — припайка внешних выводов, герметизация.

Состав припоев влияет на электрические параметры паяемых приборов, поэтому при выборе припоев следует учитывать их электрофизические свойства, например электропроводность, температурный коэффициент линейного расширения. Составы припоев для низкотемпературной пайки приведены в табл. 1. Для пайки полупроводников применяют также припои-пасты на основе галлия; для обеспечения надежности смачивания контактной поверхности используют ультразвук. Составы припоев и режимы пайки германия и кремния приведены в табл. 2.

1. Составы низкотемпературных припоев, применяемых при пайке германия и кремния

2. Составы припоев и режимы пайки германия и кремния

В качестве флюсов используют спиртовые и водные растворы хлористого цинка и хлористого аммония или вазелиновые пасты (бескислотные флюсы — раствор канифоли в спирте). При высокотемпературной пайке применяют флюсы на основе буры.

Паяемость полупроводников на основе твердых растворов халькогенидов сурьмы и висмута зависит от следующих факторов: способа производства полупроводников (экструзия, прессование, зонная плавка), технологии подготовки поверхности, состава припоев, режима пайки.

Диффузионные процессы между припоем и полупроводником способствуют образованию соединений, увеличивающих переходное сопротивление термоэлемента, поэтому время контакта полупроводника с припоем в процессе лужения и пайки должно быть предельно ограниченным. Отклонение температуры нагрева при пайке не должно превышать 2. 3°С.

Для пайки полупроводников на основе халькогенидов сурьмы и висмута в качестве припоев применяют сплавы, содержащие висмут, свинец, олово, кадмий, сурьму, теллур, алюминий, галлий, индий, серебро. При производстве терморегулирующих устройств применяют припои и флюсы, приведенные в табл. 3 и 4. Припои № 2 и 3 (табл. 3) используют также для однослойного и двухслойного лужения полупроводников. При пайке полупроводников этого типа большинство процессов выполняется вручную. Для условий массового производства процесс пайки механизирован.

3. Составы припоев для пайки полупроводников на основе халькогенидов сурьмы и висмута

4. Составы флюсов для пайки полупроводников на основе халькогенидов сурьмы и висмута

Полученное таким путем паяное соединение должно обеспечивать определенное сопротивление контакта площадью 1 см 2 . Это требование к качеству пайки ужесточается с уменьшением высоты ветвей полупроводников (для ветви высотой порядка 2 мм сопротивление контакта площадью 1 см 2 не более 1 * 10 -6 Ом * см 2 ). Кроме того, соединение должно быть виброустойчивым, коррозионно-стойким и выдерживать заданное время работы в условиях термоциклирования от 100 °С до 0 °С в течение 10 000 ч, сохраняя требуемые эксплуатационные свойства.

Подготовка поверхности полупроводников типа халькогенидов к облуживанию включает следующие этапы:

  • удаление консервирующего слоя парафина обезжириванием в бензине (или четырех-хлористом углероде) при 90 °С в течение 5 мин и последующая промывка изделия в горячей воде;
  • шлифование образцов с двух сторон до оптимальной толщины абразивной пастой М-14 (раствор порошка окиси алюминия дисперсностью 14 мкм в воде) в течение 5 мин при механизированном производстве. При этом производится снятие дефектных слоев (0,2. 0,3 мм), образовавшихся в процессе разрезания полупроводников. При обработке вручную кроме шлифования производится также полирование поверхности образца.
Читайте также  Клумбы во дворе

Обезгаживание поверхности полупроводников достигается выдерживанием их в эксикаторе в течение двух суток.

Хранить подготовленные к облуживанию образцы следует в герметичных сосудах с притертыми пробками.

Облуживание полупроводников. При облуживании вручную используют паяльник с никелевым наконечником; применение медного наконечника недопустимо, так как при взаимодействии полупроводника с медью образуются соединения теллура, обладающие большим электросопротивлением. Механизированное облуживание производится погружением деталей (в кассете) в расплав припоя с одновременной активацией поверхности механическим способом или ультразвуком.

Облуживание и пайка материалов теплообменников. При облуживании меди применяют такие же флюсы и припои, как и при облуживании полупроводников ПВДХ-1 и ПВЭХ-1 однослойным и двухслойным способами.

При облуживании алюминия в качестве припоев для первого слоя (ультразвуковое лужение) применяют припои на основе цинка, для последующих слоев — припои, используемые в качестве поверхностных слоев для лужения полупроводников; облуживание алюминия, плакированного медью, производят аналогично облуживанию меди.

Технология пайки полупроводников с теплообменниками определяется коммутационным материалом, используемым для изготовления теплообменника (медь или алюминий).

Качество коммутации терморегуляторов оценивают по электрическим характеристикам и величине тепловых потерь соединения в отдельных его элементах (при пайке вручную) и в сборе. Электрическое сопротивление паяных термоэлементов определяют одно- и двухзондовыми методами. Тепловые потери оценивают по термостойкости припоев и по добротности термоэлемента по методу «заморозки».

Справочник по пайке. Под ред. И.Е. Петрунина.

Экзофлюсовая пайка

В основном этим способом паяют коррозионностойкие стали. На очищенное место соединения наносят тонкий порошкообразный слой флюса. Соединяемые поверхности совмещают, на противоположные стороны заготовок укладывают экзотермическую смесь. Смесь состоит из разных компонентов, которые укладывают в форме пасты или брикетов толщиной в несколько миллиметров. Собранную конструкцию устанавливают в приспособлении и помещают в специальную печь, в которой происходит зажигание экзотермической смеси при 500 oC.

В результате экзотермических реакций смеси температура на поверхности металла повышается и происходит расплавление припоя. Этим методом паяют соединения внахлестку и готовые блоки конструкций небольших размеров.

Для выпаивания разъема или детали из платы без перегрева нужно залудить контакты низкоплавким материалом.

Итоговая температура плавления будет выше, чем у Розе в чистом виде так как он смешивается с припоем на плате у которого другой состав и характеристики. (плавление при 270 °C)

Материнскую плату от компьютера придется дольше прогревать, чем маленькую плату от мобильного телефона из-за большей многослойности и толщины текстолита.

Сначала наносится флюс на контакты выпаиваемой детали. Добавляется несколько гранул легкоплавкого припоя. Есть несколько техник паяльных работ.

Работа паяльником

Нужны массивные жала: мини волна, топорик.

Температуру паяльника можно оставить в пределах 230 °C, например, 200 °C.

Контакты детали нужно залудить легкоплавким сплавом, предварительно нанеся флюс.

На контактах образуется капля припоя, которую легко разогреть одним паяльником на небольшой мощности.

Результат паяльных работ.

Как выпаять разъем USB одним паяльником и Розе

Быстрая и безопасная пайка одним паяльником и легкоплавким припоем.

Пайка феном

Фен выставляется на температуру примерно 120 — 170 °C со средним потоком воздуха.

Гранулы постепенно расплавляются и смешиваются с контактами. Их лучше поправлять пинцетом по месту пайки, чтобы припой лучше распределился.

Нужно тщательно прогреть место пайки. Постепенно, по мере повышения температуры, деталь начнет выпаиваться. Это будет заметно при появлении блика на припое.

Результат низкотемпературной пайки.

Комбинированный метод

Фен сверху над местом пайки нужен для вспомогательного инструмента, на 100°C, а паяльником паяются детали сплавом Розе на температуре 200 °C.

После пайки детали обязательна очистка от получившейся смеси припоя с помощью оплетки.

Низкотемпературные припои

Низкотемпературные сплавы используются для пайки радиодеталей, чувствительных к действию высокой температуры. К ним относятся: припой ПОС 40 и припой ПОС 30. Они широко применяются в промышленности, но их также берут и для частного использования.

ПОС 30 отлично подходит для пайки меди и сплавов не ее основе. Он используется и как присадочный материал и в целях лужения деталей. Особенностью данной марки является отсутствие в ее составе сурьмы.

ПОС 30 позволяет получать надежные герметичные соединения, что обусловило активное применение материала для трубопроводных систем. Кроме того, он характеризуется хорошей проводимостью и низким сопротивлением, что позволяет использовать его с целью получения мелких контактов.

Низкая температура плавления позволяет избежать перегрева радиодеталей при пайке. В то же время, после застывания, он надежно фиксирует части изделия.

С технической точки зрения выполнять пайку данным сплавом достаточно легко. Однако следует иметь в виду, что в случае его использования детали не должны работать при высоких температурах.

Выпускается ПОС 30 в форме проволоки различного диаметра от 0,5 до 8 мм. Толщину выбирают исходя из задач, которые необходимо решить. Чтобы соединить мелкие провода и детали, отлично подойдет наименьший вариант. А вот ремонт корпусов и спайку крупных изделий проще осуществлять 8 мм проволокой.

Припой ПОС 40 имеет близкие технические характеристики к ПОС 30. В состав также не входит сурьма. Он относится к низкотемпературному классу. Плотности отмеченных сплавов и начало температуры плавления также одинаковы.

Отличаются они друг от друга, конечно же, составом. Об этом свидетельствуют цифры в конце их маркировки.

Разновидности бессвинцовых припоев.

ПОС 40 позволяет получать качественные и надежные соединения. При работе с ним не появляются трещины, а также отсутствуют не пропаянные места и другие дефекты. Незначительное сопротивление и хорошая проводимость позволяют применять ПОС для пайки электроники.

Как уже было отмечено выше, данный припой имеет низкую температуру плавления. Это также накладывает ограничения на использование изделий паяемых с его применением.

Наиболее распространенная форма выпуска сплава – проволока. Ее диаметр варьируется от 0,5 до 7 мм. Однако он существует и в виде прутков, ленты фольги, небольших трубок.

Еще одним низкотемпературным припоем является ПОС 61. Однако у него в составе присутствует сурьма. Сплав отличается достаточно хорошей пластичностью. Наиболее широко используется для пайки полупроводниковой техники. Удельное сопротивление припоя ПОС 61 составляет 0,139 Ом*мм 2 /м.

Выпускается в виде металлических слитков весом около 25 кг, прутков с сечением от 8 до 15 мм, проволоки с диаметром от 0,5 до 6 мм. Существуют также такие форм-факторы, как ленты, аноды и трубки.

А можно ли паять и лудить с помощью Розе

Для выпаивания деталей с платы сплав подходит, но для окончательной пайки уже детали на плату — ни в ком случае из-за хрупкости. Сплав Розе очень хрупкий, соединения получаются ненадежными. Особенно это касается разъемов и проводов. Когда по плате или проводам протекает электрический ток, выделяется тепло.

Из-за этого начинает плавиться низкотемпературный спав. К тому же, он не терпит вибрации или механических ударов. Появляются микротрещины, возникают окислы и потеря соединения.

Лужение сплавом Розе

У радиолюбителей есть популярный «ленивый» способ лужения плат с помощью слава Розе. Для этого в кипящую кастрюлю с щепоткой лимонной кислоты добавляются несколько гранул низкотемпературного сплава и платы, которые нужно залудить. Припой равномерно в считанные секунды распределяется. Основные недостатки данного способа лужения — это токсичность и все та же хрупкость сплава.

Читайте также  Скамейка со спинкой своими руками

Меры предосторожности

Так как используемые материалы токсичны, то обязательно паять в проветриваемом помещении и средствах защиты.

Во время паяльных работ нужно держать дистанцию и надевать защитные очки. Расплавленные капли металла могут попасть на кожу или слизистые тем самым вызвав ожоги, заражение.

Сами гранулы брать только пинцетом, не допуская контакта. Они не настолько токсичны, но это намного уменьшает его влияние.

Нельзя допускать попадание сплава и его частичек на открытые раны.

Как выполняется пайка медных труб своими руками?

Требуемые инструменты: труборез, фаскосниматель, труборасширитель, стальной ершик для чистки внутренних поверхностей медных труб, щетка для зачистки соединений,газовая горелка или фен, припой.

Рассмотрим, как паять медные трубы своими руками:

  1. Посредством трубореза отрезаем трубу необходимой длины. Щеткой снимаем заусеницы, внутреннюю поверхность изделия чистим ершиком;
  2. Посредством труборасширителя расширяем 2-ой отрезок изделия до требуемого диаметра. Помните, что детали трубопровода должны входить друг в друга с небольшим зазором;
  3. Щеткой чистим края расширенного элемента трубопровода от загрязнений и заусениц;
  4. Равномерно наносим флюс на деталь медного трубопровода меньшего диаметра;
  5. Соединяем обе детали трубопровода. Влажной тканью удаляем излишки флюса;
  6. Равномерно прогреваем соединение. Когда флюс будет серебристым, работу можно заканчивать;
  7. К линии стыка деталей трубопровода подносим припой. После того, как он расплавится, припой должен остыть естественным

путем. Дуть на него не нужно;

  • По остывании припоя протираем соединение влажной материей. Мера эта нужна затем, чтобы удалить остатки химических веществ.
  • Научиться паять медные детали трубопровода своими руками просто. Достаточно соблюдать инструкции. Однако если что-то так и осталось для вас непонятным, вы всегда можете включить обучающее видео, где детально рассмотрено, как паять медные трубы.